INTRODUCTION

Willamette Hatchery is located along Salmon Creek, approximately 3 miles upstream from its confluence with the Middle Fork of the Willamette River, 1 mile southeast of Oakridge on Fish Hatchery Road, off of Highway 58. The site is at an elevation of 1,217 feet above sea level, at latitude 43° 44’ 37” N (43.74361) and longitude 122° 26’ 33” W (122.4425). The site area is 108 acres. The hatchery is basically split into two separate rearing sections.

Dexter Holding Ponds, located immediately below Dexter Dam, is operated as a satellite facility. The Dexter site is at an elevation of 675 feet above sea level, at latitude 43° 55’ 00” N (43.91667) and longitude 122° 45’ 00” W (122.75000).

Water flow available to the hatchery, based on the current water delivery system, ranges from a low of 29,623 gpm to a high 37,028 gpm. All rearing units receive single-pass water.

The hatchery is staffed with 9.7 FTE’s.

Rearing Facilities at Willamette Hatchery

<table>
<thead>
<tr>
<th>Type</th>
<th>Unit</th>
<th>Length (ft)</th>
<th>Width (ft)</th>
<th>Depth (ft)</th>
<th>Volume (ft³)</th>
<th>Units</th>
<th>Total Volume (ft³)</th>
<th>Material</th>
<th>Age</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Willamette</td>
<td></td>
</tr>
<tr>
<td>Adult Holding Pond</td>
<td>250</td>
<td>20</td>
<td>1.90</td>
<td>9,500</td>
<td>1</td>
<td>9,500</td>
<td></td>
<td>earth/gravel</td>
<td>1940</td>
<td>Poor</td>
</tr>
<tr>
<td>Brood Ponds</td>
<td>74</td>
<td>26.5</td>
<td>3.50</td>
<td>6,864</td>
<td>2</td>
<td>13,727</td>
<td></td>
<td>concrete</td>
<td>1953</td>
<td>fair</td>
</tr>
<tr>
<td>Burroughs Ponds</td>
<td>80</td>
<td>20</td>
<td>2.50</td>
<td>3,710</td>
<td>40</td>
<td>14,400</td>
<td></td>
<td>concrete</td>
<td>1952</td>
<td>fair</td>
</tr>
<tr>
<td>Canadian Troughs</td>
<td>16</td>
<td>2.67</td>
<td>1.75</td>
<td>75</td>
<td>13</td>
<td>975</td>
<td></td>
<td>fiberglass</td>
<td>1987</td>
<td>good</td>
</tr>
<tr>
<td>Raceways</td>
<td>100</td>
<td>20</td>
<td>3.75</td>
<td>7,500</td>
<td>10</td>
<td>75,000</td>
<td></td>
<td>concrete</td>
<td>1953</td>
<td>fair</td>
</tr>
<tr>
<td>Vertical Incubators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>810</td>
<td></td>
<td></td>
<td>fiberglass</td>
<td>1980</td>
<td>good</td>
</tr>
<tr>
<td>Dexter Ponds</td>
<td></td>
</tr>
<tr>
<td>Adult Holding Pond</td>
<td>75</td>
<td>18</td>
<td>4.50</td>
<td>6,075</td>
<td>1</td>
<td>6,075</td>
<td></td>
<td>concrete</td>
<td>1978</td>
<td>good</td>
</tr>
<tr>
<td>Raceways</td>
<td>135</td>
<td>18</td>
<td>6.00</td>
<td>14,580</td>
<td>4</td>
<td>58,320</td>
<td></td>
<td>concrete</td>
<td>1978</td>
<td>good</td>
</tr>
<tr>
<td>Rearing Pond</td>
<td>172</td>
<td>64</td>
<td>6.00</td>
<td>66,048</td>
<td>1</td>
<td>66,048</td>
<td></td>
<td>asphalt</td>
<td>1978</td>
<td>good</td>
</tr>
</tbody>
</table>
PURPOSE

Willamette Trout Hatchery and the adjacent Oakridge Salmon Hatchery were combined in 1983 and operate today as Willamette Hatchery. The trout hatchery was constructed in 1922 and the salmon hatchery in 1911. The U.S. Army Corps of Engineers (USACE) rebuilt the salmon hatchery in 1952 to mitigate for fishery losses caused by Hills Creek, Lookout Point and the Dexter hydroelectric/flood control projects. The trout side was rebuilt between 1950-56.

Today, Willamette Hatchery is used for adult holding/spawning, egg incubation and rearing of spring chinook and rainbow trout. In addition, both summer and winter steelhead are reared at this facility. The Dexter satellite facility serves as an adult collection, rearing and acclimation release site for spring chinook and summer steelhead. All facilities are funded with state and federal revenues.

PROGRAM TYPE

The ODFW Hatchery Management Policy defines hatchery programs as either harvest or conservation programs. Harvest programs operate to enhance or maintain fisheries without impairing naturally reproducing populations. Conservation programs operate to maintain or increase the number of naturally produced fish without reducing the productivity of naturally reproducing populations.

Willamette Hatchery programs are harvest programs, used to mitigate for fishing and harvest opportunities lost due to habitat loss and migration blockage resulting from the Willamette Basin hydroelectric/flood control projects.

GOALS

Spring Chinook:

Middle Fork Willamette River (022) Stock: To provide fish for harvest and to mitigate for hydro impacts and habitat loss. The goals of this hatchery program are:

- Replacement of spring Chinook in sports and commercial fisheries that were lost due to the construction and operation of Hills Creek, Lookout Point, Dexter (IHOT, 1997) and Fall Creek Dams.
- Increase the average annual run size and maintain recreational-catch opportunities.
- Return adequate fish to the Dexter facility to maintain the existing broodstock, as well as to have hatchery broodstock available as a reserve population for the naturally produced run.
- Maintain the hatchery population as similar to the historical wild run as possible (OAR 635-500-1663).

South Santiam River (024) Stock: This is a mitigation program with the following goals:

- Mitigate the loss of spring chinook catch in sport and commercial fisheries resulting from the construction and operation of Foster and Green Peter dams (IHOT, 1999).
• Provide adequate adult returns to the hatchery for broodstock to meet program goals as outlined in the Santiam River Subbasin Fish Management Plan (OAR 635-500-1666).
• Maintain suitable broodstock for ongoing and future population recovery efforts throughout the subbasin.

Rainbow Trout: to provide triploid rainbow trout to mitigate for trout harvest opportunities lost as a result of 13 flood control projects in the Upper Willamette River subbasin.

South Santiam River (024) Summer Steelhead: to provide fish for sport fisheries and replace fisheries lost due to habitat and production loss in the Willamette River Basin.

Siuslaw River (038) Winter Steelhead: to provide for an average annual recreational harvest of 2,000 hatchery winter steelhead while minimizing interactions with wild fish, as outlined in the Siuslaw River Basin Fish Management Plan.

OBJECTIVES

Objective 1: Foster and sustain opportunities for sport, commercial, and tribal fishers consistent with the conservation of naturally produced native fish.

Brook Trout:
Canadian Triploid (070T) Stock:
Hold 6,000 fingerlings (30 pounds) for high lakes backpack stocking.

Spring Chinook:
Middle Fork Willamette River (022) Stock:
Provide 15,000 eggs for STEP.

Produce 1,507,000 fingerlings (15,070 pounds) and 240,000 smolts (9,600 pounds) for transfer to Dexter Ponds to produce 1,672,000 smolts (171,333 pounds) for release into the Middle Fork Willamette River.

Produce 267,000 smolts (28,105 pounds) for release into the Coast Fork Willamette River.

Produce 300,000 fingerlings (2,000 pounds) for release into Lookout Point Reservoir.

Produce 100,000 fingerlings (1,000 pounds) for release into Hills Creek Reservoir.

South Santiam River (024) Stock:
Produce 306,000 fingerlings (2,040 pounds) and 428,000 smolts (40,519 pounds) for transfer to South Santiam Hatchery.

Cutthroat Trout:
Hackleman Creek – Fish Lake (119) Stock:
Hold 15,000 fingerlings (75 pounds) for high lakes backpack stocking (even years only).
Rainbow Trout:
Cape Cod Triploid (072T) Stock:
Produce 25,000 fingerlings (125 pounds) for high lakes backpack stocking every other year.

Produce 30,000 fingerlings (1,500 pounds) for stocking in Hills Creek Reservoir.

Produce 485,000 fingerlings (27,762 pounds) for transfer to Leaburg Hatchery.

Produce 313,320 legal-sized fish (104,509 pounds) and 15,400 trophy-size fish (10,269 pounds) for stocking from Willamette Hatchery.

Crane Prairie Triploid (127T) Stock:
Produce 30,000 fingerlings (1,500 pounds) for release into Hills Creek Reservoir.

Summer Steelhead:
South Santiam River (024) Stock:
Produce 61,500 smolts (4,393 pounds) for transfer to Dexter Ponds to produce 61,000 smolts (13,556 pounds) for release into the Middle Fork Willamette River.

Produce 66,000 smolts (14,667 pounds) for transfer to Minto Ponds for acclimation and release into the North Fork Santiam River.

Winter Steelhead:
Siuslaw River (038) Stock:
Produce 100,000 fingerlings (500 pounds) for transfer to Roaring River Hatchery.

Objective 2: Contribute toward the sustainability of naturally produced native fish populations through the responsible use of hatcheries and hatchery-produced fish.

Objective 3: Maintain genetic resources of native fish populations spawned or reared in captivity.

Objective 4: Restrict the introduction, amplification, or dissemination of disease agents in hatchery produced fish and in natural environments by controlling egg and fish movements and by prescribing a variety of preventative, therapeutic and disinfecting strategies to control the spread of disease agents in fish populations in the state.

Objective 5: Minimize adverse ecological impacts to watersheds caused by hatchery facilities and operations.

Objective 6: Communicate effectively with other fish producers, managers and the public.

CURRENT PRACTICES TO ACHIEVE OBJECTIVES

The sections that follow describe the current hatchery practices associated with anadromous and resident fish production at this facility. Because ODFW hatcheries are managed to maximize use of
the hatchery rearing space, hatchery operations are dynamic and subject to annual change depending upon statewide program needs.

The Native Fish Conservation Policy, the Fish Hatchery Management Policy, the Fish Health Management Policy and Hatchery Genetic Management Plans provide guidelines for the management of wild and hatchery fish in Oregon. These policies describe the brood collection, rearing, release, and health management strategies currently used at this facility.

Objective 1: Foster and sustain opportunities for sport, commercial, and tribal fishers consistent with the conservation of naturally produced native fish.

Adult Collection

Brook Trout:
Canadian Triploid (070T) Stock: No broodstock are collected or maintained at this facility. Eggs are purchased from Kootenai Hatchery in British Columbia.

Spring Chinook:
Middle Fork Willamette (022) Stock: Adults arrive from May to October. Peak spawning occurs during mid-September. Adults are collected at Dexter Rearing Pond and trucked to Willamette Hatchery for holding and spawning.

South Santiam River (024) Stock: No adults are collected at this facility (see South Santiam Hatchery Plan for additional information).

Rainbow Trout:
Cape Cod (072) Stock: Broodstock are maintained at Roaring River Hatchery.

Summer Steelhead:
South Santiam River (024) Stock: No adult collection occurs for brood stock at this hatchery. Fish returning to Dexter Trap are recycled back to the Middle Fork of the Willamette River System. Fish are normally received as fingerlings from Oak Springs Hatchery.

Winter Steelhead:
Siuslaw River (038) Stock: No adults are collected at this hatchery. Adults are collected at the Siuslaw River Trap by STEP.

Objective 2: Contribute toward the sustainability of naturally produced native fish populations through the responsible use of hatcheries and hatchery-produced fish.

Rearing and Release Strategies
Rearing and release strategies are designed to limit the amount of ecological interactions occurring between hatchery and naturally produced fish. Fish are reared to sufficient size that smoltification occurs within nearly the entire population, which will reduce the retention time in downstream migration. Rearing on parent river water, or acclimation to parent river water for several weeks, is used to ensure strong homing to the hatchery, thus reducing the stray rate to natural populations. Various release strategies are used to ensure that fish migrate from the hatchery with least amount of interaction with native populations. The specific rearing and release strategies used at this hatchery are outlined below.

Brook Trout:

Canadian Triploid (070T) Stock:
Receive 6,000 fingerlings at 200 fish/pound from Fall River Hatchery in early July; hold for high lakes backpack stocking in mid-July.

Spring Chinook:

Middle Fork Willamette (022) Stock:
Rear 1,507,000 fingerlings to a size of 100 fish/pound for transfer to Dexter Ponds in late May – early June for final rearing. All fish are otolith marked and fin-clipped and 400,000 are coded-wire tagged prior to transfer.

Rear 240,000 smolts to a size of 25 fish/pound for transfer to Dexter Ponds in mid-November for final rearing. All fish are otolith marked and fin-clipped and 100,000 are coded-wire tagged prior to transfer.

Release 300,000 smolts from Dexter Ponds at a size of 8 fish/pound into the Middle Fork Willamette in late October – early November. All fish are otolith marked and fin-clipped and 100,000 are coded-wire tagged prior to release.

Release 670,000 smolts from Dexter Ponds at a size of 12 fish/pound into the Middle Fork Willamette in early February. All fish are otolith marked and fin-clipped and 100,000 are coded-wire tagged prior to release.

Release 234,000 smolts at a size of 9 fish/pound from Dexter Ponds into the Middle Fork Willamette in early March. All fish are otolith marked and fin-clipped and 100,000 are coded-wire tagged prior to release.

Release 234,000 smolts at a size of 9 fish/pound from Dexter Ponds into the Middle Fork Willamette in late March. All fish are otolith marked and fin-clipped and 100,000 are coded-wire tagged prior to release.

Release 234,000 smolts from Dexter Ponds at a size of 9 fish/pound into the Middle Fork Willamette in mid-April. All fish are otolith marked and fin-clipped and 100,000 are coded-wire tagged prior to release.
Rear 267,000 smolts to a size of 9.5 fish/pound for direct release into the Coast Fork Willamette River in mid-February. All fish are otolith marked and fin-clipped and 75,000 are coded-wire tagged prior to release.

Rear 100,000 fingerlings to a size of 100 fish/pound for release into Hills Creek Reservoir in early June. All fish are otolith marked and fin-clipped prior to release.

Rear 300,000 fingerlings to a size of 150 fish/pound for release into Lookout Point Reservoir in mid-May. All fish are otolith marked and fin-clipped prior to release. Some of these are coded wire tagged and some are pit tagged.

South Santiam River (024) Stock:

Rear 306,000 fingerlings to a size of 150 fish/pound for transfer to South Santiam Hatchery in early June. All fish are otolith marked.

Rear 160,000 smolts to a size of 13 fish/pound for transfer to South Santiam Hatchery in mid-November. All fish are otolith marked and fin-clipped prior to transfer.

Rear 268,000 smolts to a size of 9.5 fish per pound for transfer to South Santiam Hatchery in late February. All fish are otolith marked and fin-clipped and 30,000 fish are coded-wire tagged prior to transfer.

Cutthroat Trout:

Hackleman Creek – Fish Lake (119) Stock:

Hold 15,000 fingerlings at 200 fish/pound for high lakes backpack stocking in early July. This program occurs every other year.

Rainbow Trout:

Cape Cod Triploid (072T) Stock:

Rear 25,000 fingerlings to a size of 200 fish/pound for backpack stocking of high lakes in mid-July every other year.

Rear 30,000 fingerlings to a size of 20 fish/pound for release into Hills Creek Reservoir in late September.

Rear 365,000 fingerlings to a size of 15 fish/pound and 120,000 fingerlings to a size of 35 fish/pound for transfer to Leaburg Hatchery in late August.

Rear 313,320 fish to a size of 3 fish/pound for liberations from Willamette Hatchery occurring February through September.

Rear 15,400 fish to a size of 1.5 fish/pound for liberations from Willamette Hatchery occurring in May and June.
Crane Prairie Triploid (127T) Stock:
Rear 30,000 fingerlings to a size of 20 fish/pound for release into Hills Creek Reservoir in late September.

Summer Steelhead:
South Santiam River (024) Stock:
Receive 140,000 fingerlings at a size of 65 fish/pound from Oak Springs Hatchery in June.
Rear 61,500 smolts to a size of 14 fish/pound for transfer to Dexter Ponds in November for final rearing to a size of 4.5 fish/pound for release of 61,000 smolts into the Middle Fork Willamette River in early April. All fish are fin-clipped prior to release.
Rear 66,000 smolts to a size of 4.5 fish/pound for transfer to Minto Ponds in early March for acclimation and release into the North Fork Santiam River. All fish are fin-clipped prior to release.

Winter Steelhead:
Siuslaw River (038) Stock:
Rear 100,000 fingerlings to a size of 200 fish/pound for transfer to Roaring River Hatchery in late June – early July.

Objective 3: Maintain genetic resources of native fish populations spawned or reared in captivity.

Broodstock Selection and Spawning
Oregon's Native Fish Conservation Policy and Hatchery Genetic Management Plans outline broodstock selection and spawning protocols for some fish stocks. The following practices are currently being used at Willamette Hatchery:

Brook Trout:
Canadian Triploid (070T) Stock: No broodstock selection or spawning takes place at this hatchery.

Spring Chinook:
Middle Fork Willamette (022) Stock: Adults are collected throughout the run. Most adults are collected during the middle of the run with smaller numbers collected at the early and late portions of the run. The annual spawning population is large enough to maintain a 1:3 male to female spawning ratio. The majority of the run is comprised of hatchery fish. Willamette, McKenzie and South Santiam spring chinook stocks are all acceptable stocks for use at Willamette Hatchery.

South Santiam River (024) Stock: Broodstock selection and spawning take place at South Santiam Hatchery.
Cutthroat Trout:
 Hackleman Creek – Fish Lake (119) Stock: Broodstock selection and spawning take place at Oak Springs Hatchery.

Rainbow Trout:
 Cape Cod (072) Stock: Broodstock selection and spawning take place at Roaring River Hatchery.

Summer Steelhead:
 South Santiam River (024) Stock: No spawning occurs at this facility (see South Santiam Hatchery Plan). The Skamania summer steelhead stock is acceptable for use at Willamette Hatchery.

Winter Steelhead:
 Siuslaw River (038) Stock: No spawning occurs at this facility. Adults are collected and spawned at the Siuslaw River Trap by STEP.

Objective 4: Restrict the introduction, amplification, or dissemination of disease agents in hatchery produced fish and in natural environments by controlling egg and fish movements and by prescribing a variety of preventative, therapeutic and disinfecting strategies to control the spread of disease agents in fish populations in the state.

Fish Health Management Programs—All Stocks

ODFW has adopted a Fish Health Management Policy that describes measures that minimize the impact of fish diseases on the state’s fish resources. The primary objective of fish health management programs at ODFW hatcheries is to produce healthy smolts that will contribute to the fishery and return sufficient numbers of adults to continue propagation of the stocks and provide supplementation if desired. Equally important is to prevent the introduction, amplification or spread of fish pathogens that might negatively affect the health of both hatchery and naturally reproducing stocks.

ODFW has implemented both disease control and disease prevention programs at all of its facilities to achieve these objectives. These programs include the following standard elements:

Disease Control (Reactive)

- Perform necropsies of diseased and dead fish to diagnose the cause of loss.

- Prescribe appropriate treatments and remedies to disease. This includes recommending modifications in fish culture practices, when appropriate, to alleviate disease-contributing factors.
• Apply a disease control policy as stated in the Oregon Administrative Rules which dictates how specific disease problems will be addressed and what restrictions may be placed on movements of diseased stocks.

• Conduct applied research on new and existing techniques to control disease epizootics.

Disease Prevention (Proactive)

• Routinely remove dead fish from each rearing container and notify ODFW Fish Pathology if losses are increasing. Monthly mortality records are submitted to Fish Pathology from each hatchery.

• Routinely perform examinations of live fish to assess health status and detect problems before they progress to clinical disease or mortality.

• Implement disease preventative strategies in all aspects of fish culture to produce a quality fish. This includes prescribing the optimal nutritional needs and environmental conditions in the hatchery rearing container based on historical disease events. It also involves the use of vaccines or antibiotics in order to avoid a disease problem.

• Use a disease prevention policy that restricts the introduction of stocks into a facility. This will help avoid new disease problems and fish pathogens not previously found at the site.

• Use sanitation procedures that prevent introduction of pathogens into and/or within a facility.

• Conduct applied research on new and existing disease prevention techniques.

• Utilize pond management strategies (e.g., Density Index and Flow Index guidelines) to help optimize the quality of the aquatic environment and minimize fish stress that can be conducive to infectious and noninfectious diseases. For example, a Density Index is used to estimate the maximum number of fish that can occupy a rearing unit based on the rearing unit’s size. A Flow Index is used to estimate the rearing unit’s carrying capacity based on water flows.

Fish Health Activities at Willamette Hatchery/Dexter Ponds

Health Monitoring

• All fish are given a health inspection no longer than 6 weeks before fish are released or transferred. This exam may be in conjunction with the routine monthly visit.
• Monthly health monitoring examinations of healthy and clinically diseased fish are conducted on each fish lot. The sample includes a minimum of 10 moribund/dead fish (if available) and 4-6 live fish per lot.

• Examinations for *Myxobolus cerebralis*, agent of whirling disease, are conducted annually on 60 fish held for a minimum of 180 days at the facility.

• At spawning, a minimum of 60 ovarian fluids and 60 kidney/spleen/pyloric caeca (based on a minimum sampling at the 5% incidence level) are examined for viral pathogens from each salmon lot. If prespawning mortality is above normal, necropsies are conducted on dead adult fish for bacteria, parasites and other causes of death.

• Whenever abnormal behavior is reported or observed, or mortality exceeds 0.1% per day over five consecutive days in any rearing container, the fish pathologist will examine the affected fish, make a diagnosis and recommend the appropriate remedial or preventative measures.

• Reporting and control of specific fish pathogens are conducted in accordance with the Fish Health Management Policy. Results from each examination mentioned above are reported on the ODFW Fish Health or Virus Examination forms.

Fish and Egg Movements

• Movements of fish and eggs are conducted in accordance with the Fish Health Management Policy.

Therapeutic and Prophylactic Treatments

• Adult spring chinook are injected with antibiotics for the control of bacterial diseases.

• At spawning, eggs are water-hardened in iodophor for disinfection.

• Juvenile fish are administered antibiotics orally as needed for the control of bacterial infections and for prevention of diseases.

• Formalin is dispensed into water for control of parasites and fungus on eggs and juveniles. Treatment dosage and exposure time varies with species, life stage and condition being treated.

• Only approved or permitted therapeutic agents are used for treatments:

 o FDA labeled and approved for use on food fish

 o Allowed by the FDA as an Investigational New Animal Drug

 o Obtained by extra-label prescription from a veterinarian
- Allowed by the FDA as low regulatory priority or deferred regulatory status
- Approved by the FDA through USFWS for fish listed under the federal Endangered Species Act.

Sanitation

- All eggs brought to the facility are surface-disinfected or water-hardened in buffered iodophor.

- Disinfection footbaths (or other means of disinfection) are provided at the incubation facility’s entrance and exit areas while embryos are incubating in the facility.

- All equipment (e.g., nets, tanks, rain gear, boots) is disinfected with iodophor between uses with different fish/egg lots or different rearing containers.

- Dead fish are disposed of promptly and in a manner that prevents introduction of disease agents to the waters of the state.

- Rearing units are cleaned on a regular basis.

- Fish transport trucks are disinfected between the hauling of different fish lots.

- Rearing units are sanitized after removing fish and before introducing a new fish stock either by thorough cleaning and use of a disinfectant or by cleaning and leaving dry for an extended time.

Objective 5: Minimize adverse ecological impacts to watersheds caused by hatchery facilities and operations.

Environmental Monitoring

Primarily, environmental monitoring is conducted at ODFW facilities to ensure these facilities meet the requirements of the National Pollution Discharge Elimination Permit administered by the Oregon Department of Environmental Quality. It is also used in managing fish health. On a short-term basis, monitoring helps identify when changes to hatchery practices are required. Long-term monitoring provides the ability to quantify water quality impacts resulting from changes in the watershed (e.g., logging, road building and urbanization). The following environmental parameters are currently monitored at all ODFW hatcheries:

- Total Suspended Solids (TSS) – measured quarterly. Two composite samples are collected, one during normal operations and one during cleaning. Some facilities may take more samples because of multiple outfalls.
- Settleable Solids (SS) – measured quarterly. Two composite samples are collected, one during normal operations and one during cleaning. Some facilities may take more samples because of multiple outfalls.

- pH – measured quarterly when settleable solids are measured.

- Total Ammonia and Total Phosphorus – measured quarterly during the first 12 months of the permit when settleable solids are measured.

- Water Temperatures – daily maximum and minimum water temperatures are measured within the hatchery. Temperature units are recorded for egg development in some hatcheries. Effluent and receiving stream temperatures are measured weekly from April to October.

- Dissolved Oxygen (DO) – measured only when conditions warrant (e.g., periods of low flows and high temperatures).

- Air Temperatures – maximum and minimum temperatures are recorded daily at some stations, but there are no special monitoring requirements.

- Flow Logs – changes in water flows through the hatchery ponds are recorded weekly.

Objective 6: Communicate effectively with other fish producers, managers and the public.

Coordination/Communication within ODFW

Annual Fish Production Meetings: ODFW conducts meetings throughout the state to set annual fish production goals for all public hatcheries in Oregon. These meetings involve the participation of ODFW research, management and fish culture staff as well as representatives from applicable federal agencies and tribes.

Record Keeping: The following records are kept at all ODFW hatcheries:

- Anadromous Adult Transaction Report – details the collection and disposition of all adult fish handled at the facility.

- Mark Recovery Report – details sex, fish length and tag information from all marked adult fish that are captured.

- Egg and Fry Report – records all egg and fry movements, treatments, etc.
- Monthly Ponded Report – updates hatchery operations from the previous month (i.e., current number of fish, size, transfers or releases, feed conversion, mortality, medication, etc.).

- Monthly Progress Report – document summarizing operational activities for the hatchery and all satellite facilities (e.g., fish culture, fish health, fish distribution, maintenance and safety).

- Fish Loss and Treatment Report – records disease problems and daily mortality.

- Fish Loss Report/Investigation – when 1,000 or more juveniles or 10 or more adult fish are accidentally lost in a single accident.

- Predator Mortality Report – documents any fish predators that may die at the hatchery facility.

- Fish Liberation Reports – details information regarding all fish releases (e.g., fish numbers, size, location, method of release, marks, etc.).

- Coded–Wire Tag Release Reports – record of all juvenile fish released with coded-wire tags.

- Length Frequency Record – details fish lengths of all anadromous fish released (based on a sample of the releases).

- Chemical use, waste discharge monitoring, purchasing, budget, hazardous materials, safety, vehicles, equipment, maintenance and alarm logs.

- Visitor Log – some facilities record the daily visitor use of the facility; however, this is not a requirement.

Hatchery Management Information System (HMIS): Computerized system to collect, report, summarize and analyze hatchery production data. This system is a tool to be used in production control at all hatchery management levels.

Interagency Coordination/Communication

Production Advisory Committee (PAC): The Columbia River PAC is comprised of representatives from the regulatory management agencies and tribes. This group meets monthly to discuss anadromous fish production issues and to provide an opportunity for communication among the anadromous fish hatchery managers.

Technical Advisory Committee (TAC): The Columbia River TAC is comprised of regulatory fish harvest technicians. This group provides management direction used in establishing hatchery fish production goals. TAC meets monthly.
Pacific Northwest Fish Health Protection Committee (PNFHPC): This group is comprised of representatives from U.S. and Canadian fish management agencies, tribes, universities, and private fish operations. The group meets twice a year to monitor regional fish health policies and to discuss current fish health issues in the Pacific Northwest.

In-River Agreements: State and tribal representatives meet annually to set Columbia River harvests as part of the *U.S. v. Oregon Agreement*. Periodic meetings are also held throughout the year to assess if targets are being met.

Streamnet (www/streamnet.org): Hatchery return data are input into StreamNet, a cooperative information management and data dissemination project focused on fisheries and aquatic related data and data related services in the Columbia River basin and the Pacific Northwest. StreamNet is funded through the Northwest Power and Conservation Council's Fish and Wildlife Program by the Bonneville Power Administration and are administered by the Pacific States Marine Fisheries Commission. The data are maintained and disseminated through the Pacific States Marine Fisheries Commission (PSMFC).

In-Season Communications: Communication with PAC, the Columbia River Inter-Tribal Fish Commission, Washington Department of Wildlife, Washington Department of Fisheries, U.S. Fish and Wildlife Service and Idaho Department of Fish and Game takes place each year to coordinate proper fish and egg transfers in an effort to meet basin-wide goals at all facilities, where applicable.

Communication with the General Public

Willamette/Dexter facilities receive approximately 20,000 visitors each year.
Willamette Hatchery
Brook Trout – Stock 70T (Canadian Triploid)

Willamette Hatchery
6,000 @ 200 fish/lb
from Wizard Falls Hatchery

High Lakes Backpack Stocking
6,000 @ 200 fish/lb
July
Willamette Hatchery
Spring Chinook Salmon – Stock 22 (Middle Fork Willamette)

Willamette Hatchery
4,000,000 Green Eggs
September

Transfer

Upper Willamette STEP
15,000 Eyed Eggs
October
Willamette River
15,000 Unfed Fry
December
Classroom Incubators

Dexter Ponds
1,507,000 @ 100 fish/lb
June

Dexter Ponds
240,000 @ 25 fish/lb
November

Mid. Fork Willamette River
300,000 @ 8 fish/lb
November

Mid. Fork Willamette River
670,000 @ 12 fish/lb
February

Mid. Fork Willamette River
468,000 @ 9 fish/lb
March

Mid. Fork Willamette River
234,000 @ 9 fish/lb
April

Release

Hills Creek Reservoir
100,000 @ 100 fish/lb
June

Lookout Point Reservoir
300,000 @ 150 fish/lb
November

Coast Fork Willamette River
267,000 @ 9.5 fish/lb
February
Willamette Hatchery
Spring Chinook Salmon – Stock 24 (South Santiam River)

Willamette Hatchery
1,200,000 Eyed Eggs
from South Santiam Hatchery
October

Transfer

South Santiam Hatchery
306,000 @ 150 fish/lb
June

S. Fork Santiam River
300,000 @ 8 fish/lb
February

South Santiam Hatchery
160,000 @ 13 fish/lb
November

S. Fork Santiam River
160,000 @ 9 fish/lb
February

South Santiam Hatchery
268,000 @ 9.5 fish/lb
February

S. Fork Santiam River
268,000 @ 9 fish/lb
March
Willamette Hatchery
Cutthroat Trout – Stock 119 (Hackleman Creek)
(even years only)

Willamette Hatchery
15,000 @ 200 fish/lb
from Oak Springs Hatchery
June

High Lakes Backpack Stocking
15,000 @ 200 fish/lb
July
Willamette Hatchery
Rainbow Trout – Stock 72T (Cape Cod Triploid)

Willamette Hatchery
1,500,000 Eyed Eggs
from Roaring River Hatchery
January

Transfer

Leaburg Hatchery
365,000 @ 15 fish/lb
120,000 @ 35 fish/lb
August

5 Waterbodies – Cascade District
34,600 @ 3 fish/lb, 2,220 @ 1.5 fish/lb
February – June

7 Waterbodies – Mid Willamette District
224,685 @ 3 fish/lb, 5,675 @ 1.5 fish/lb, 700 @ 1.0 fish/lb, 275 @ 0.5 fish/lb
January – December

3 Waterbodies – Upper Willamette District
145,460 @ 3 fish/lb, 17,485 @ 1.5 fish/lb
February – September

Educational Fish – Leaburg Hatchery
1,000 @ 3 fish/lb
March – July

Release

15 Waterbodies – Upper Willamette District
30,000 @ 20 fish/lb, 191,050 @ 3 fish/lb, 15,600 @ 1.5 fish/lb
March – October

3 Waterbodies – Mid-Willamette District
16,400 @ 3 fish/lb
June - September

4 Waterbodies – Cascade District
104,320 @ 3 fish/lb
June – September

High Lakes Backpack Stocking – Upper Willamette District
25,000 @ 200 fish/lb
July (even years only)
Willamette Hatchery
Rainbow Trout – Stock 127T (Crane Prairie Triploid)

Willamette Hatchery
120,000 Eyed Eggs
from Wizard February

Hills Creek Reservoir
30,000 @ 20 fish/lb
September
Willamette Hatchery
Summer Steelhead – Stock 24 (South Santiam River)

Willamette Hatchery
80,000 Eyed Eggs from South Santiam Hatchery
70,000 @ 60 fish/lb from Oak Springs Hatchery
June

Transfer

Minto Ponds
66,000 @ 4.5 fish/lb
March

N. Fork Santiam River
66,000 @ 4.5 fish/lb
April

Dexter Ponds
61,500 @ 14 fish/lb
November

M. Fork Willamette River
61,000 @ 4.5 fish/lb
April
Willamette Hatchery
Winter Steelhead – Stock 38 (Siuslaw River)

Willamette Hatchery
160,000 Eyed Eggs
from Alsea Hatchery
April

Transfer

Roaring River Hatchery
100,000 @ 200 fish/lb
June

Release

Whittaker Creek
70,000 @ 6 fish/lb
May

Green Creek
15,000 @ 6 fish/lb
May