NOAA’s National Marine Fisheries Service (NMFS) proposes to adopt a recovery plan for the protection and restoration of Middle Columbia River steelhead (Oncorhynchus mykiss), which spawn and rear in tributaries to the Columbia River in central and eastern Washington and Oregon. The Middle Columbia River steelhead distinct population segment (DPS) was first listed as threatened under the Endangered Species Act (ESA) in 1999. Its threatened status was affirmed on January 5, 2006. The Proposed Middle Columbia River Steelhead Recovery Plan (the Plan) is currently available for public review and comment.

Eighteen of the 33 salmon and steelhead species in the Northwest are listed as threatened or endangered. The Middle Columbia River steelhead is among those with the best prospects for recovery, although it will require considerable investment of long-term effort and funding for protection and restoration.

This recovery plan is based on four locally developed management unit plans, included as appendices to the Plan, that provide recovery actions for the steelhead populations and major population groups that make up the DPS. The Plan also draws upon the work of the Interior Columbia Technical Recovery Team (ICTRT), a team of scientists appointed by NMFS to provide a solid scientific foundation for the plans.

This Plan also uses information from two “modules” developed by NMFS to address conditions in the Columbia River mainstem and estuary: the Hydro Module, based on the NMFS 2008 Biological Opinion on the Federal Columbia River Power System, and the Estuary Module (NMFS 2007). In addition to proposed actions in the management unit plans, the Plan relies upon Hatchery and Genetic Management Plans and Artificial Production for Pacific Salmon (Appendix C of the Supplemental Comprehensive Analysis, NMFS 2008 Biological Opinion) to address hatchery effects. For harvest effects, the Plan refers to fishery management planning through U.S. v. Oregon for mainstem fisheries, and Fisheries Management Evaluation Plans for tributary fisheries.
Management Unit Recovery Plans

For the purpose of recovery planning, NMFS defined four “management units” in the Middle Columbia River steelhead spawning region, based on jurisdictional boundaries as well as areas where local planning efforts were underway. Recovery plans were developed for each management unit. NMFS prepared this plan for the entire DPS, based on the management unit plans, which are the work of local groups and county, state, Federal, and tribal entities within the Middle Columbia River region on both sides of the river.

Oregon Management Unit

Conservation and Recovery Plan for Oregon Steelhead Populations in the Middle Columbia River Steelhead Distinct Population Segment (Oregon Steelhead Recovery Plan)

The Oregon Department of Fish and Wildlife (ODFW) is the lead for the Oregon Steelhead Conservation and Recovery Plan. ODFW drew together three groups to help with the plan: the Middle Columbia Recovery Planning Team, made up of ODFW staff biologists and representatives from eight state natural resource agencies; a planning forum, the Middle Columbia Sounding Board, made up of representatives of local communities, agricultural water users, Federal and non-Federal land managers, governing bodies, tribes, and industry and environmental interests; and an Expert Panel of 12 biologists to examine limiting factors and threats for the 10 independent steelhead populations in Oregon.

Yakima Management Unit

Yakima Steelhead Recovery Plan

The Yakima Basin Fish and Wildlife Recovery Board includes representatives from the Yakama Nation, Benton, Kittitas, and Yakima counties, and 18 of the 24 municipalities in the Yakima Basin. The Board developed the Yakima Basin Steelhead Recovery Plan.

Southeast Washington Management Unit

Southeast Washington Management Unit: Snake River Salmon Recovery Plan for Southeast Washington

The Snake River Salmon Recovery Board developed the Southeast Washington Recovery Plan. The Board consists of representatives of the Confederated Tribes of the Umatilla Indian Reservation; a county commissioner and citizen representative from Asotin, Columbia, Garfield, Walla Walla and Whitman counties; a land owner representative from Asotin, Columbia and Garfield counties; and the Walla Walla county irrigation district.

Washington Gorge Management Unit

Recovery Plans for the Klickitat, Rock Creek, and White Salmon subbasin populations of Middle Columbia River steelhead

The Washington Gorge management unit comprises three subbasins, which do not so far have a Washington State-sponsored salmon recovery planning board. NMFS prepared a recovery plan for each of these subbasins, in collaboration with the Yakama Nation, Washington Department of Fish and Wildlife (WDFW), Klickitat County, the Washington Governor’s Salmon Recovery Office, other Federal agencies, state agencies, local governments, and the public.

The Middle Columbia Recovery Planning Forum

NMFS initiated a collaborative process to develop this plan for the entire Middle Columbia River steelhead DPS. The Middle Columbia Recovery Planning Forum (Mid-C Forum) is a bi-state, tri-tribe group convened by NMFS, many of whose members led the preparation of the management unit plans. The Mid C Forum contributed substance as well as scientific and critical review to the DPS plan. Participants in the Mid-C Forum include the ODFW, WDFW, the Yakama Nation, Confederated Tribes of the Warm Springs Indian Reservation, Confederated Tribes of the Umatilla Indian Reservation, Washington Governor’s Salmon Recovery Office, Oregon Governor’s Natural Resources Office, Snake River Salmon Recovery Board, Yakima Basin Fish and Wildlife Recovery Board, US Bureau of Reclamation, US Fish and Wildlife Service, US Forest Service, US Army Corps of Engineers, Klickitat County, and NMFS Northwest Region.

Steelhead Distribution & Life History

The spawning range of the Middle Columbia River steelhead DPS extends over an area of approximately 35,000 square miles in the Columbia plateau of eastern Washington and eastern Oregon. The DPS includes all naturally spawned populations of steelhead in streams from above the Wind River in Washington and the Hood River, in Oregon (exclusive), upstream to, and including, the Yakima River in Washington, excluding steelhead from the Snake River Basin (64 FR 14517; 71 FR 849).

Most of the region is privately owned (64 percent), with the remaining area under Federal (23 percent), tribal (10 percent) and state (3 percent) ownership. Most of the landscape consists of rangeland and timberland, with significant concentrations of dryland agriculture.
Irrigated agriculture and urban development are generally concentrated in valley bottoms. Human populations in these regions are growing.

Four artificial propagation programs are considered part of the DPS: the Touchet River Endemic Summer Steelhead Program, the Yakima River Kelt Reconditioning Program, and the Umatilla River and Deschutes River steelhead hatchery programs.

The species *Oncorhynchus mykiss* exhibits perhaps the most complex suite of life history traits of any species of Pacific salmonid. These fish can be anadromous or freshwater residents (and under some circumstances, apparently yield offspring of the opposite form). Steelhead can spawn more than once, whereas all other *Oncorhynchus* except cutthroat trout (*O. clarki*) spawn once and then die.

Within the range of West Coast steelhead, spawning migrations occur throughout the year, with seasonal peaks of activity. The “runs” are usually named for the season in which the peak occurs. Most steelhead can be categorized as one of two run types, based on their sexual maturity when they re-enter freshwater and how far they go to spawn. In the Pacific Northwest, summer steelhead enter freshwater between May and October and require several months to mature before spawning; winter steelhead enter freshwater between November and April and spawn shortly thereafter. Summer steelhead usually spawn farther upstream than winter steelhead. The Middle Columbia River steelhead DPS includes populations of inland winter steelhead in the Klickitat River, White Salmon River, Fifteenmile Creek, and possibly Rock Creek.

Middle Columbia River Steelhead Populations & Major Population Groups

The ICTRT identified 20 historical populations of Middle Columbia River steelhead. This identification was based on genetic information, geography, life history traits, morphological traits, and population dynamics. Seventeen of these populations are extant, and three extirpated (White Salmon River, Deschutes Crooked River above Pelton Dam, and Willow Creek).

The ICTRT stratified the Middle Columbia River steelhead populations into major population groups (MPGs) based on ecoregion characteristics, life history types, and other geographic and genetic considerations. It identified four MPGs: Cascades Eastern Slope Tributaries, Yakima Basin, John Day Basin, and Umatilla/Walla Walla. The John Day Basin MPG is wholly within Oregon and the Yakima Basin MPG is wholly within Washington. The other two include populations on both sides of the Oregon/Washington boundary.

Current Status

The status of a salmon or steelhead species is expressed in terms of likelihood of persistence over 100 years, or in terms of risk of extinction within 100 years. The ICTRT defined viability at two levels: less than 5 percent risk of extinction within 100 years (viable) and less than 1 percent risk of extinction within 100 years (highly viable). A third category, “maintained,” represents a less than 25 percent risk. The risk level of the DPS as a whole is built up from the aggregate risk levels of the populations and MPGs. The abundance, productivity, spatial structure, and diversity of the component populations (the “viable salmonid population,” or VSP, parameters) must be taken into account to determine the risk level.

The Middle Columbia River steelhead DPS does not currently meet viability criteria because its four component MPGs are not at low risk. However, for this DPS the outlook is relatively optimistic. One population, North Fork John Day, is currently at very low risk or “highly viable.” Two populations are currently viable (Deschutes Eastside, Fifteenmile); eleven are at moderate risk, with good prospects for improving. However, three large populations at high risk (Deschutes Westside, Naches, and Upper Yakima) are important to DPS viability; these present significant challenges.

Significant programs are underway for natural recolonization (White Salmon) or reintroduction (Deschutes Crooked River above Pelton Dam) of two of the extirpated populations to historically accessible habitat; success of these programs should help improve overall DPS viability.

The table on the following page summarizes the current status of the Middle Columbia River steelhead populations, showing 10-year geometric mean abundance by population, estimated productivity, and the minimum abundance threshold needed for long-term viability. The table also includes the 10-year geometric mean proportion of hatchery spawners for the populations where data are available, and the risk ratings of high, moderate, low, and very low, for abundance and productivity combined, and spatial structure and diversity combined.
Middle Columbia River steelhead DPS populations: Summary of abundance, productivity, risk ratings, and minimum abundance thresholds (Source: ICTRT, Current Status Reviews: Interior Columbia Basin Salmon and Steelhead ESUs. Vol. III. May 2008). (Numbers subject to periodic updates as additional information becomes available.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Cascades MPG</td>
<td></td>
</tr>
<tr>
<td>Deschutes (westside)</td>
<td>1000</td>
<td>Large (Inter)</td>
<td>Summer</td>
<td>456</td>
<td>108-1283</td>
<td>0.26</td>
<td>1.05</td>
<td>0.15</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Deschutes (eastside)</td>
<td>1000</td>
<td>Intermed.</td>
<td>Summer</td>
<td>1599</td>
<td>299-8274</td>
<td>0.39</td>
<td>1.89</td>
<td>0.27</td>
<td>L</td>
<td>M</td>
</tr>
<tr>
<td>Klickitat River</td>
<td>1000</td>
<td>Intermed.</td>
<td>Wtr & Smr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Fifteenmile Creek</td>
<td>500</td>
<td>Basic</td>
<td>Winter</td>
<td>703</td>
<td>231-1922</td>
<td>0</td>
<td>1.82</td>
<td>0.20</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Rock Creek</td>
<td>500</td>
<td>Basic</td>
<td>Summer</td>
<td>Insufficient Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>White Salmon</td>
<td>500</td>
<td>Basic</td>
<td>Functionally extirpated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Crooked River</td>
<td>2250</td>
<td>Very Large</td>
<td>Summer</td>
<td>Extirpated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yakima River MPG</td>
<td></td>
</tr>
<tr>
<td>Upper Yakima River</td>
<td>1500</td>
<td>Large</td>
<td>Summer</td>
<td>85</td>
<td>34-283</td>
<td>0.02</td>
<td>1.12</td>
<td>0.22</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Naches River</td>
<td>1500</td>
<td>Large</td>
<td>Summer</td>
<td>472</td>
<td>142-1454</td>
<td>0.06</td>
<td>1.12</td>
<td>0.22</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Toppenish River</td>
<td>500</td>
<td>Basic</td>
<td>Summer</td>
<td>322</td>
<td>44-1252</td>
<td>0.06</td>
<td>1.60</td>
<td>0.30</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Satus Creek (trib only)</td>
<td>1000</td>
<td>Intermed.</td>
<td>Summer</td>
<td>379</td>
<td>138-1000</td>
<td>0.06</td>
<td>1.73</td>
<td>0.14</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>John Day Basin MPG</td>
<td></td>
</tr>
<tr>
<td>Lower Mainstem John Day</td>
<td>2250</td>
<td>Very Large</td>
<td>Summer</td>
<td>1800</td>
<td>563-6257</td>
<td>0.1</td>
<td>2.99</td>
<td>0.24</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>North Fork John Day</td>
<td>1500</td>
<td>Large</td>
<td>Summer</td>
<td>1740</td>
<td>369-10,235</td>
<td>0.08</td>
<td>2.41</td>
<td>0.22</td>
<td>VL</td>
<td>L</td>
</tr>
<tr>
<td>Upper Mainstem John Day</td>
<td>1000</td>
<td>Intermed.</td>
<td>Summer</td>
<td>524</td>
<td>185-5169</td>
<td>0.08</td>
<td>2.14</td>
<td>0.33</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Middle Fork John Day</td>
<td>1000</td>
<td>Intermed.</td>
<td>Summer</td>
<td>756</td>
<td>195-3538</td>
<td>0.08</td>
<td>2.45</td>
<td>0.16</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>South Fork John Day</td>
<td>500</td>
<td>Basic</td>
<td>Summer</td>
<td>259</td>
<td>76-2729</td>
<td>0.08</td>
<td>2.06</td>
<td>0.27</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Umatilla/Walla Walla MPG</td>
<td></td>
</tr>
<tr>
<td>Umatilla River</td>
<td>1500</td>
<td>Large</td>
<td>Summer</td>
<td>1472</td>
<td>592-3542</td>
<td>0.36</td>
<td>1.50</td>
<td>0.15</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Walla Walla Mainstem</td>
<td>1000</td>
<td>Intermed.</td>
<td>Summer</td>
<td>650</td>
<td>270-1746</td>
<td>0.02</td>
<td>1.34</td>
<td>0.12</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>Touchet River</td>
<td>1000</td>
<td>Intermed.</td>
<td>Insufficient Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Willow Creek</td>
<td>1000</td>
<td>Intermed.</td>
<td>Summer</td>
<td>Extirpated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ Abundance threshold for viability based on habitat intrinsic potential
² Average proportion of hatchery spawners over most recent 10 years in the data series.
³ Geomean return per spawner calculated over most recent 20 years in data series.
⁴ H = high risk, M= moderate risk, L = low risk, VL = very low risk
⁵ The Deschutes Westside steelhead population is classified as Large in terms of spatial structure, but its abundance threshold may be considered 1000 or 1500 because of lack of access to historical habitat. See Carmichael, Richard W., Conservation and Recovery Plan for Oregon Steelhead Populations in the Middle Columbia River Steelhead DPS. 2008
Limiting Factors & Threats

The reasons for a species’ decline are generally described in terms of limiting factors and threats. NMFS defines limiting factors as the biological and physical conditions that limit a species’ viability – e.g., high water temperature – and defines threats as those human activities or natural processes that cause the limiting factors. For example, removing the vegetation along the banks of a stream can cause higher water temperatures, because the stream is no longer shaded. The threats contributing to the limiting factors and causes for a species’ decline are often described in terms of the “four Hs” – habitat (usually relating to the effects of land use and tributary water use), hydropower, harvest, and hatcheries. While the term “threats” carries a negative connotation, it does not mean that activities identified as threats are inherently undesirable. They are typically legitimate human activities that may at times have unintended negative consequences on fish populations—and that can also be managed in a manner that may minimize or eliminate the negative impacts.

Limiting Factors & Threats for the Middle Columbia River Steelhead DPS

At a general level, based on information from the ICTRT, the four management unit plans, and the modules, the major factors limiting the viability of Middle Columbia River steelhead populations are the following:

- Degraded tributary habitat
- Impaired fish passage in the mainstem Columbia River and tributaries
- Hatchery-related effects
- Predation/competition/disease
- Predation/competition/disease

Two other factors, degradation of estuarine and nearshore marine habitat and harvest-related effects, pose some risk to steelhead viability for the entire DPS, but less than the other factors. Climate change represents a potentially significant threat to recovery of Middle Columbia River steelhead populations.

Limiting Factors & Threats for the Cascades Eastern Slope Tributaries MPG

Tributary habitat. Degraded riparian areas, lack of suitable spawning habitat, low or altered stream flows, degraded water quality (especially high water temperatures), impaired floodplain connectivity and function, altered channel structure and complexity, and impaired fish passage.

Mainstem Columbia River passage. Direct mortality; delayed upstream migration of returning adults; and cumulative impact of hydropower system on mainstem and estuary habitat. Effects are least for the Fifteenmile Creek and Klickitat River populations, which pass only one mainstem dam. The Deschutes River populations pass two mainstem dams, and the Rock Creek population passes three.

Hatchery related effects. Hatchery fish straying into natural spawning areas pose risks to genetic traits and productivity of naturally produced steelhead. Out-of-subbasin steelhead, primarily from the Snake River, stray onto natural spawning grounds in the Deschutes River. Hatchery steelhead released in the Klickitat River may have effects on the naturally produced steelhead.

Blocked migration to historically accessible habitat. Currently, the Pelton-Round Butte Hydroelectric Project, constructed at river mile 100 on the mainstem Deschutes River, creates a barrier to anadromous fish attempting to reach spawning and rearing areas in the upper basin. Plans are underway to reinitiate fish passage facilities at the Pelton-Round Butte complex and reintroduce steelhead to the upper basin.

Predation/competition/disease. Predation, competition, and disease issues in mainstem and estuary can affect all of the Middle Columbia River steelhead populations. In addition, it is possible that the abundance of the Deschutes River Westside steelhead population may be limited by competition with a large resident population of rainbow trout.
Limiting Factors & Threats for the John Day River MPG

Mainstem passage. These populations must pass three dams; thus, limiting factors include direct mortality of pre-smolts and smolts at John Day, The Dalles, and Bonneville dams; delayed upstream migration of returning adults; false attraction of returning adults over McNary Dam; and cumulative impact of hydropower system on mainstem and estuary habitat.

Hatchery related effects. Concern over competition for resources with wild fish and potential hybridization with natural-origin fish resulted in termination of all hatchery stocking of *O. mykiss* in the John Day River basin in 1997. However, hatchery strays, primarily from the Snake River, have been observed in all John Day populations, particularly in the lower John Day mainstem. Hatchery fish straying into natural spawning areas pose risks to genetic traits and productivity of naturally produced steelhead.

Tributary habitat. For all five John Day populations, degraded floodplain and degraded channel structure (key habitat quantity and habitat diversity), altered sediment routing, water quality (high temperatures), and altered hydrology are limiting factors. For the Lower and Upper Mainstem and South Fork populations, passage obstructions in some of the smaller tributaries are also significant.

Predation/competition/disease. Predation, competition, and disease issues in mainstem and estuary can affect all of the Middle Columbia River steelhead populations.

Limiting Factors & Threats for the Umatilla/Walla Walla MPG

Mainstem passage. The Walla Walla and Touchet populations must pass four major mainstem Columbia River dams; the Umatilla population must pass three. Limiting factors include direct mortality; delayed upstream migration of returning adults; cumulative impact of hydropower system on mainstem and estuary habitat; and, because they must migrate farther upstream than most of the other populations, higher exposure to altered habitat as well as avian and piscine predators in the mainstem Columbia.

Tributary habitat. For all three populations, water quality (temperature), sediment problems, blocked and impaired fish passage, degraded floodplain and channel structure (resulting in lack of spawning and rearing habitat) and hydrologic alterations are limiting factors.

Hatchery related effects. Hatchery fish are not identified as a threat to the Umatilla population. Non-endemic-origin hatchery fish are considered a potential threat to the Walla Walla wild steelhead population. Currently, data are insufficient to determine whether hatchery effects are a problem for the Touchet River population.

Predation/competition/disease. Predation, competition, and disease issues in mainstem and estuary can affect all of the Middle Columbia River steelhead populations.

Limiting Factors & Threats for the Yakima Basin MPG

Mainstem passage. The Yakima steelhead populations must pass four mainstem Columbia River dams. Limiting factors include direct mortality; delayed upstream migration of returning adults, and cumulative impact of hydropower system on mainstem and estuary habitat. As the farthest upstream populations of Middle Columbia River steelhead, they undergo higher exposure to altered habitat as well as avian and piscine predators in the mainstem Columbia.

Tributary habitat. Fish habitat in the Yakima subbasin is substantially affected by irrigation systems. Limiting factors include altered hydrology (low summer flow because of withdrawals in tributaries and the lower Yakima, scouring peak flows because of degraded watershed conditions, high summer delivery flows in mainstem Yakima and Naches rivers, reduced winter and spring flows due to irrigation storage, delivery, and withdrawals); degraded riparian areas; blocked and impaired fish passage (primarily due to storage and diversion dams, as well as entrainment in unscreened diversions); altered sediment routing; degraded water quality; loss of historical habitat due to blocked or impaired fish passage; degraded floodplain connectivity and function (loss of off-channel habitat, side channels and connected hyporheic zone); degraded channel structure and complexity; reduced outmigrant survival in the mainstem Yakima.
Middle Columbia River Steelhead

Hatchery related effects. The Yakima populations have the lowest rates of hatchery strays in the DPS, and hatchery effects are not considered a significant limiting factor.

Predation/competition/disease. Of the Middle Columbia River steelhead populations, the Yakima basin populations have the longest migration through the mainstem Columbia River. They may therefore be more vulnerable to some factors such as avian and piscivorous fish predation. For example, Yakima steelhead are consumed by Caspian tern and double-crested cormorants nesting on islands at the mouth of the Snake River.

Recovery Goals & Delisting Criteria

The recovery goals that are incorporated into locally developed recovery plans may include delisting, reclassification (e.g., from endangered to threatened), and/or other “broad sense” goals that may go beyond the requirements for delisting to address, for example, other legislative mandates or social, economic, or ecological values. Delisting criteria must meet the ESA requirements, while “recovery” may be defined more broadly.

Recovery criteria are of two kinds: the biological viability criteria, which deal with the parameters of abundance, productivity, spatial structure, and diversity at the population, MPG, and DPS levels, and the “threats” criteria, which relate to the five listing factors detailed in the ESA (The present or threatened destruction, modification, or curtailment of [the species’] habitat or range; over-utilization for commercial, recreational, scientific or educational purposes; disease or predation; the inadequacy of existing regulatory mechanisms; or other natural or human-made factors affecting its continued existence). The threats criteria define the conditions under which the listing factors, or threats, can be considered to be addressed or mitigated. Together the biological and threats criteria make up the “objective, measurable criteria” required under ESA section 4(f)(1)(B) for the delisting decision. NMFS’ delisting criteria may include these as well as other technical and policy considerations.

NMFS’ biological viability criterion for Middle Columbia River steelhead is to have all four major population groups at viable (low-risk) status, with representation of all the major life history strategies present historically, and with the abundance, productivity, spatial structure and diversity attributes required for long-term persistence. However, it may not be necessary for all of the populations to attain low risk in order to provide sufficient viability for the MPGs or the DPS as a whole. The possible combinations of risk status for populations in each MPG that would allow the DPS to meet viability criteria are called “recovery scenarios.”

Recovery Strategy

NMFS’ 2006 listing decision for Middle Columbia River steelhead called upon Federal, state, and tribal entities to do their best to manage land, hydropower, hatchery, and harvest activities in a manner that would support steelhead recovery. This plan reaffirms those recommendations and adds to them with contributions of science and consensus building from the management unit plans.

The recovery strategy for the Middle Columbia River steelhead DPS is made up of the following elements:

- Address the limiting factors for each major population group and population, following the recommendations in the 2006 listing decision, making use of the strategies and actions developed in the management unit plans, in concert with those provided in the NMFS 2008 FCRPS Biological Opinion; other programs and agreements summarized in the Hydro Module (e.g. Habitat Conservation Plans), NMFS Estuary Module, Hatchery and Genetic Management Plans, and Artificial Production for Pacific Salmon (Appendix C of Supplemental Comprehensive Analysis, NMFS 2008); fishery management planning through U.S. v. Oregon for mainstem fisheries; and Fisheries Management Evaluation Plans for tributary fisheries in Oregon.
- Address and coordinate DPS-wide and basin-wide issues through the Mid-Columbia Forum (a bi-state, tri-tribe group convened by NMFS to provide input on the development and implementation of the DPS recovery plan).
- Coordinate research, monitoring, and evaluation throughout the range of the DPS.
- Conduct periodic comprehensive reviews of new information generated through the research, monitoring, and evaluation program. Adapt the strategies and actions as appropriate to achieve the recovery plan goals. NMFS believes that if this strategy is implemented and the biological response is as expected, the DPS is likely to achieve viable status within 25 to 50 years.
Recovery Strategies for the Four Major Population Groups

These summaries of recovery strategies for the four major population groups are drawn from the management unit plans and the ICTRT’s status assessment.

Cascades Eastern Slope Tributaries MPG

<table>
<thead>
<tr>
<th>Population</th>
<th>ICTRRT Risk Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifteenmile Creek (Oregon)</td>
<td>Viable</td>
</tr>
<tr>
<td>Deschutes Eastside (Oregon)</td>
<td>Viable</td>
</tr>
<tr>
<td>Klickitat (Washington)</td>
<td>(provisional) Moderate risk – insufficient data, hatchery influence</td>
</tr>
<tr>
<td>Rock Creek (Washington)</td>
<td>(provisional) High risk – insufficient data</td>
</tr>
<tr>
<td>Deschutes Westside (Oregon)</td>
<td>High risk</td>
</tr>
<tr>
<td>White Salmon (Washington)</td>
<td>Functionally extirpated (with program for natural recolonization of historical habitat after Condit Dam is removed in 2009)</td>
</tr>
<tr>
<td>Crooked River (Oregon)</td>
<td>Extirpated (with program for reintroduction to historical habitat)</td>
</tr>
</tbody>
</table>

Recovery Scenario:

For the Eastern Cascades Slope Tributaries MPG to be considered viable based on the currently extant populations, the Klickitat, Fifteenmile, and both the Deschutes Eastside and Westside populations should reach at least viable status. The management unit plans also call for at least one population to be highly viable, consistent with ICTRT recommendations. The Rock Creek population should reach “maintained” status (25 percent or less risk level). MPG viability could be further bolstered if reintroduction of steelhead into the Crooked River succeeds and if the White Salmon population successfully recolonizes its historical habitat.

Key actions proposed:

- Protect, improve, and increase freshwater habitat for steelhead production. Improvements to freshwater habitat should be targeted to address specific limiting factors in specific areas as described in the Oregon Steelhead Recovery Plan and the Washington Gorge plans.
- Reduce straying of out-of-DPS hatchery fish onto natural spawning grounds within the Deschutes subbasin.
- Restore historical passage to the upper Deschutes subbasin including the Westside tributaries and Crooked River above Pelton Round Butte dam complex and the White Salmon River above Condit Dam.
- Improve survival in mainstem and estuary through actions detailed in NMFS Estuary Module (NMFS 2007) and FCRPS Biological Opinion (NMFS 2008).
- Improve hatchery management to minimize impacts from hatchery releases on naturally produced steelhead within the Deschutes Westside and Eastside subbasins and Klickitat subbasin.
- Fill data gaps for better assessment of Klickitat and Rock Creek steelhead populations.
- Coordinate among scientists, planners, and implementers of recovery actions on both sides of the Columbia River for sequencing of recovery actions and monitoring for adaptive management.
Middle Columbia River Steelhead

John Day River MPG

<table>
<thead>
<tr>
<th>Population</th>
<th>ICTRT Risk Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Fork John Day</td>
<td>Highly viable</td>
</tr>
<tr>
<td>Upper Mainstem John Day</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Lower Mainstem John Day</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>Middle Fork John Day</td>
<td>Moderate risk</td>
</tr>
<tr>
<td>South Fork John Day</td>
<td>Moderate risk</td>
</tr>
</tbody>
</table>

Recovery Scenario: For the John Day River MPG to reach viable status, the Lower Mainstem John Day River, North Fork John Day River, and either the Middle Fork John Day River or Upper Mainstem John Day River populations should achieve at least viable status. The management unit plan also calls for at least one population to be highly viable, consistent with ICTRT recommendations.

Key Actions proposed:

- Protect and improve freshwater habitat conditions and connectivity for steelhead production. Improvements to freshwater habitat should be targeted to address specific factors in specific areas as described in the Oregon Steelhead Conservation and Recovery Plan.
- Improve hatchery management to reduce straying from out-of-DPS hatchery fish onto natural spawning grounds within the John Day subbasin.
- Improve survival in mainstem and estuary through actions detailed in NMFS Estuary Module (NMFS 2007) and FCRPS Biological Opinion (NMFS 2008).

Yakima River MPG

<table>
<thead>
<tr>
<th>Population</th>
<th>ICTRT Risk Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Yakima River</td>
<td>High Risk</td>
</tr>
<tr>
<td>Naches River</td>
<td>High Risk</td>
</tr>
<tr>
<td>Satus Creek</td>
<td>Moderate Risk</td>
</tr>
<tr>
<td>Toppenish Creek</td>
<td>Moderate Risk</td>
</tr>
</tbody>
</table>

Recovery Scenario: For the Yakima River MPG to achieve viable status, two populations should be rated as viable, including at least one of the two classified as Large - the Naches River and the Upper Yakima River. The remaining two populations should, at a minimum, meet the Maintained criteria. The management unit plan also calls for at least one population to be highly viable, consistent with ICTRT recommendations.

Key actions proposed:

- Protect and enhance habitat in key tributary watersheds in the Yakima Basin.
- Restore passage to blocked areas in the Naches and Upper Yakima population areas.
- Alter irrigation delivery and storage operations in the Yakima Basin to improve flow conditions for Middle Columbia River steelhead and use managed high flows to maintain floodplain habitat.
- Improve channel and floodplain function and reduce predation through the mainstem Yakima and Naches rivers.
- Improve survival in the mainstem Columbia River and its estuary through actions detailed in NMFS Estuary Module (NMFS 2007) and FCRPS Biological Opinion (NMFS 2008).
Umatilla/Walla Walla MPG

<table>
<thead>
<tr>
<th>Population</th>
<th>ICTRT Risk Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umatilla River</td>
<td>Moderate Risk</td>
</tr>
<tr>
<td>Walla Walla River</td>
<td>Moderate Risk</td>
</tr>
<tr>
<td>Touchet River</td>
<td>High Risk (provisional because of insufficient data)</td>
</tr>
</tbody>
</table>

Recovery Scenario: For the Umatilla/Walla Walla MPG to be viable, two populations should meet viability criteria. The management unit plan also calls for at least one population to be highly viable, consistent with ICTRT recommendations. The Umatilla River is the only large population, and therefore needs to be viable. Either the Walla Walla River or Touchet River population also needs to be viable.

Key actions proposed:

- Protect and improve freshwater habitat conditions and access for steelhead production. Improvements to freshwater habitat should be targeted to address specific factors in specific areas as described in the Southeast Washington Plan and the Oregon Steelhead Conservation and Recovery Plan.
- Improve hatchery management to reduce straying from out-of-DPS hatchery fish onto natural spawning grounds within the Umatilla/Walla Walla subbasins.
- Improve survival in mainstem and estuary through actions detailed in NMFS Estuary Module (NMFS 2007) and FCRPS Biological Opinion (NMFS 2008).
- Coordinate among planners, scientists, and implementers of recovery actions on both sides of the Columbia River for sequencing, monitoring, and adaptive management.

DPS-Wide & Basin-Wide Issues

Problems for juvenile and adult steelhead in migratory corridors in the mainstem Columbia River and tributaries should be addressed to improve survival.

Impaired Fish Passage – Mainstem Columbia River

Passage for juvenile steelhead migrating to the ocean and adult steelhead returning to their natal streams is limited primarily by the four Federal dams on the Lower Columbia River mainstem – Bonneville, John Day, The Dalles, and McNary – which are part of the Federal Columbia River Power System (FCRPS). NMFS recently issued a new biological opinion on the effects of FCRPS operations on salmonids, including Middle Columbia River steelhead, and on the predicted results of current and planned improvements to the system that are intended to improve fish survival (NMFS 2008). These improvements are expected to increase the in-river survival of Middle Columbia River juvenile steelhead by 0.3 percent, 5.1 percent, 8.2 percent, and 10.2 percent, depending on the number of dams they must pass. The survival of steelhead adults through the four dams is thought to be relatively high at the present time (about 98.5 percent per project from Bonneville to McNary), and is expected to be maintained or improved.

The current plan for operation of the FCRPS through 2018 (NMFS 2008) contains the following actions intended to address the needs for survival and recovery of ESA-listed salmon and steelhead:

- Continue adult fish passage operations that have resulted in improved survival.
- Improve juvenile fish passage: install removable spillway weirs or similar surface bypass devices at John Day and McNary dams, an extended tailrace spill wall at The Dalles Dam, and various modifications at Bonneville Dam. Passage for steelhead smolts at each of the four Lower Columbia River mainstem projects must reach 96 percent survival.
- Continue and enhance spill for juvenile fish passage.
- Continue reservoir operations and river flows to benefit spring migrating juveniles.
- Develop dry water year operations to better protect migrating juveniles.

The State of Oregon also proposes additional measures for the FCRPS that NMFS did not include in the FCRPS Biological Opinion.
Impaired Fish Passage - Tributaries

Actions to address fish passage in tributaries include:

- Implement locally developed management unit plans to improve fish passage in tributaries.
- Implement recommendations regarding improved passage and flow management by the U.S. Bureau of Reclamation below all its facilities in the Yakima River and the Umatilla River subbasins, provision of fish passage into significant tributaries, and provision of passage over at least two of its storage dams in the Yakima Basin.
- Implement recommendations regarding improvement of fish passage, screening, and flow management in the Walla Walla River subbasin by the U.S. Army Corps of Engineers, and altering of the flood operating rule for Mill Creek, or alternatively screening the diversion into Bennington Lake.
- Provide passage into the upper Deschutes River above Pelton-Round Butte complex and into the White Salmon River above Condit Dam.

Degraded Tributary Habitat

Measures to improve tributary habitat are contained in the management unit plans and are summarized above by MPG.

Hatchery-Related Effects

The hatchery programs in the Middle Columbia are managed under the Mitchell Act and the U.S. v. Oregon process, involving the fisheries co-managers and regulated by NMFS. Hatcheries are currently undergoing three major scientific reviews that are expected to provide important information to help develop specific recovery actions for hatchery programs. These reviews include the Mitchell Act Environmental Impact Statement, the U.S. Fish and Wildlife Service Hatchery Review, and the congressionally established Hatchery Scientific Review Group (HSRG). Collectively, these scientific reviews will evaluate every anadromous fish hatchery program in the Columbia Basin and provide significant new information to help guide future actions. Several agreements, including the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion, are in place to ensure that hatchery programs are brought up-to-date with specific actions that are consistent with recovery.

NMFS is working with the funding agencies and hatchery operators to update and complete Hatchery and Genetic Management Plans (HGMPs) for every hatchery program in the Middle Columbia region as a means of organizing hatchery review and reform. The HGMPs are the basis for NMFS’ biological opinions on hatchery programs under sections 7 and 10 and the 4(d) rule, which relate to incidental and direct take of listed species. The HGMPs describe each hatchery’s operations and the actions taken to support recovery and minimize ecological or genetic impacts, such as straying and other forms of competition with naturally produced fish.

Evaluating the factors that influence interactions between hatchery fish and naturally produced fish under varying freshwater conditions and ocean conditions is an important area of future research as well as ESA consultations and NEPA review. This is dealt with in more detail in Appendix C of the 2008 FCRPS Biological Opinion (NMFS 2008).

The management unit plans propose various actions to reduce deleterious effects of hatcheries on natural production. For example, the Oregon Steelhead Conservation and Recovery Plan proposes increased marking of Columbia Basin hatchery steelhead with coded-wire tags to better identify origin of strays, and trapping and removal of strays in the Deschutes populations. Regional consensus has not been reached on all hatchery strategies, and the Mid-Columbia Forum will continue to pursue agreement on appropriate site-specific strategies. The Klickitat subbasin plan recommends a targeted monitoring program to determine abundance and productivity of natural spawners, determine the proportion of hatchery and wild spawners in the Klickitat subbasin, and determine the adverse effects of Skamania broodstock on the Klickitat population, if any. See further details in each management unit plan.

Predation, Competition & Disease

Extensive research on predation and efforts at predator control in the Columbia Basin have been undertaken for decades. Control of piscivorous predation has focused largely on targeted sports fisheries to remove more of the predators and/or direct removal by physical or chemical means. Sport fisheries target northern pikeminnow, smallmouth bass, channel catfish, and walleye. Predation in the estuary is a major source of mortality on both adults and juveniles of all listed populations. These issues are discussed in greater detail in the Estuary Module.

Altering Rice Island to prevent tern and cormorant nesting was effective in reducing avian predation in the estuary, and the NMFS 2008 FCRPS Biological Opinion recommends further reduction in bird habitat on East Sand Island. The Biological Opinion also recommends development of plans to control Caspian terns and double-crested cormorants that nest in islands upstream of Bonneville Dam. The Corps of Engineers takes various “avian deterrent actions” at the lower Snake and Columbia River dams, and will continue to do so. NMFS supports the recommendations in the Yakima Steelhead Plan for research and monitoring to track trends in predator populations, understand their impacts on
steelhead, and develop appropriate management techniques to reduce predation.

NMFS recommends further research to evaluate the factors that influence or drive competition of hatchery fish with naturally produced fish.

Disease in salmonids is caused by multiple factors and probably cannot be directly addressed by recovery actions except in specific instances of known causal factors. It is more likely that nearly all of the recommended recovery actions that improve spawning, rearing, and passage conditions for steelhead and increase the survival, abundance, and productivity of naturally produced fish will result in decreasing incidence of disease.

Harvest

Although in general harvest is not considered a major threat for the Middle Columbia River steelhead DPS, it is important to ensure that impacts from fisheries do not impede recovery, and to monitor to verify impacts and reduce existing uncertainties.

Time & Cost

It is important to consider the unique characteristics and challenges of estimating time and cost for salmon and steelhead recovery, given the complex relationship of these fish to the environment and to human activities on land. There are many uncertainties involved in predicting the course of recovery and in estimating total costs. Such uncertainties include biological and ecosystem responses to recovery actions as well as long-term and future funding. NMFS estimates that recovery of the Middle Columbia River steelhead DPS could take 25 to 50 years, although the optimistic view is that it could be much sooner. The management unit plans contain extensive lists of actions to recover the Middle Columbia River steelhead DPS populations. These projects were developed using the most up-to-date assessment of Middle Columbia River steelhead recovery needs. The management unit plans focus, for the most part, on actions within the next 5 to 15 years.

The minimum total estimated cost of restoring habitat for the Middle Columbia River steelhead DPS is approximately $235 million over the initial 5-year period, and approximately $970 million over 25 to 50 years for all DPS-wide recovery actions for which sufficient information exists upon which to base an estimate.

Summary of Cost Estimates for Habitat Projects for Middle Columbia River steelhead DPS

<table>
<thead>
<tr>
<th>Recovery Plan</th>
<th>First 5 Years ($M)</th>
<th>Project / Program Total ($M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>$103.5</td>
<td>$512.8</td>
</tr>
<tr>
<td>Yakima Steelhead(^6)</td>
<td>$91.9</td>
<td>$269.3</td>
</tr>
<tr>
<td>SE Washington(^7)</td>
<td>$25.5</td>
<td>$76.4</td>
</tr>
<tr>
<td>Klickitat(^8, 9)</td>
<td>$12.9</td>
<td>$106.3</td>
</tr>
<tr>
<td>Rock Creek(^10)</td>
<td>$1.0</td>
<td>$1.8</td>
</tr>
<tr>
<td>White Salmon Steelhead</td>
<td>N/A</td>
<td>$6.5</td>
</tr>
<tr>
<td>DPS Totals</td>
<td>$234.8</td>
<td>$970.4</td>
</tr>
</tbody>
</table>

\(^6\) The Yakima steelhead plan estimates costs for the first 6 years, and includes a preliminary RME cost estimate of $300K/year. The 5-year estimate is extrapolated from the 6-year cost data.

\(^7\) The SE Washington plan estimates annual steelhead implementation costs at about $5 million per year. The 5-year estimate is extrapolated by multiplying the annual amount by five.

\(^8\) The Klickitat plan estimates costs for the first 10 years. The 5-year estimate was extrapolated by dividing the 10-year amount in half.

\(^9\) The Klickitat plan uses a 50-year period to estimate its total project costs.

\(^10\) The Rock Creek plan estimates costs for the first 3 years and 10 years. The 5-year estimate is extrapolated from the 3-year value.
This estimate includes expenditures by local, tribal, state, and Federal governments, private business, and individuals in implementing both capital projects and non-capital work. Administrative costs are embedded in the total management unit cost estimates in the table above. Preliminary research, monitoring and evaluation costs have, in some cases, been estimated at the management unit level; however, these costs are not included at this time pending completion of research and monitoring plans and further development of each project.

Cost estimates for proposed recovery projects were developed using the methods described in each management unit plan. No cost estimates are provided for (1) baseline actions (programs that are already in existence and would occur regardless of this recovery plan), which are listed as Not Applicable; or (2) actions that need costs to be developed, need unit costs, and/or need project scale estimates, which are listed as To Be Determined. Each management unit will work with regional experts to identify costs, scale, or unit costs for actions that require more information during the public comment period. Individual management unit costs will be updated with this new information for the final steelhead DPS recovery plan.

The cost estimates do not include expenses associated with implementing actions within the lower Columbia River, estuary, or Federal Columbia River Power System (FCRPS). Cost estimates for the FCRPS are contained in NMFS 2008. Cost estimates for the estuary are included in a module that NMFS developed because of the basin-wide scope and applicability of the actions to all 13 ESUs and DPSs listed as threatened or endangered in the Columbia Basin. The module is incorporated into the Plan by reference, and it is available on the NMFS Web site: www.nwr.noaa.gov/Salmon Recovery Planning/ESA Recovery Plans/Other Documents.cfm. The estuary recovery costs could be further refined following public comment on the module and on the ESA recovery plan for the three listed lower Columbia River ESUs and one listed lower Columbia River steelhead DPS in 2008 or early 2009. There are few estimated costs for recovery actions associated with harvest to report at this time, because no actions are currently proposed that go beyond those already being implemented through U.S. v. Oregon and other harvest management forums. In the event that additional harvest actions are implemented through these forums for the purpose of achieving steelhead recovery, those costs will be added during the implementation phase of this recovery plan. All cost estimates will be refined and updated over time.

Cost estimates from the draft cost chapters in the individual management plans were developed as consistently as possible, in that they all applied guidance provided by NMFS. However, the approaches vary to some degree given the local and independent nature of the planning groups. Costs developed in the management unit plans were estimated using several basic assumptions (i.e., neither baseline costs nor out-of-basin costs were included in the estimates) and used similar cost calculation methodologies. There are, however, differences in the timeframes for cost estimates, whether administrative costs were included or not, and whether research, monitoring and evaluation costs were calculated. The proposed management unit plans’ cost estimates will be refined based on public comment, and final cost estimates will be included in the final DPS recovery plan and management unit plans.

Implementation

NMFS’ vision for recovery implementation is that the actions identified in salmon and steelhead recovery plans will be carried out in a cooperative and collaborative manner and that recovery and delisting will occur.

NMFS’ strategic goals to achieve that vision are to:

- Sustain local support and momentum for recovery implementation.
- Implement recovery plan actions within the time periods specified in each plan.
- Ensure that the actions implemented contribute to achieving recovery.
- Provide accurate assessments of species status and trends, limiting factors, and threats.

NMFS’ strategic approach to achieving these goals is to:

- Support local efforts by using NMFS Domain Teams to coordinate (internally and externally) and encourage recovery plan implementation.
- Use recovery plans as context for internal and external regulatory decision-making.
- Use non-regulatory authorities and encourage others to use their authorities to implement recovery plans.
- Provide leadership to regional forums to develop research, monitoring, and evaluation (RME) processes that track action effectiveness and status and trends at the population and DPS levels.
- Provide periodic reports on species status and trends, limiting factors, threats, and plan implementation status.

NMFS will carry out its vision, goals, and strategic approach to recovery for Middle-Columbia steelhead by working in partnership with the Mid-C Forum.
Effectively implementing recovery actions for Middle-Columbia steelhead will require coordinating the actions of diverse private, local, state and federal parties spread across two states. In Washington, regional recovery boards have taken the lead on coordinating recovery implementation within the Yakima and Snake management units. In Oregon, an implementation coordinator and reformed advisory board will be lead on recovery plan implementation, supported by the governance structure for the Oregon Plan for Salmon and Watersheds. Actions in the Columbia River, its estuary, and the ocean are implemented by a broad range of partners, including NMFS, the Bonneville Power Administration, the Bureau of Reclamation, the Army Corps of Engineers, federal land management agencies, state and tribal fisheries co-managers, the Columbia River Estuary Partnership, and local parties and jurisdictions interested in salmon recovery. The Mid-C Forum will take the lead in efforts to coordinate the actions of these many players at a DPS level, supported by both local and regional Science Teams.

For More Information

National Marine Fisheries Service, Northwest Region
Elizabeth Gaar, 503-230-5434, elizabeth.gaar@noaa.gov

Oregon Management Unit
Oregon Department of Fish & Wildlife
Rich Carmichael (technical), 541.962.3777, rcarmichael@eou.edu
Sue Knapp (policy), 503.986.6527, Suzanne.Knapp@state.or.us
NOAA contact: Rosemary Furfey, 503.231.2149, rosemary.furfey@noaa.gov

Washington Gorge Management Unit
NOAA contact: Nora Berwick, 503.231.6887, nora.berwick@noaa.gov

Yakima Management Unit
Yakima Basin Fish & Wildlife Recovery Board
Alex Conley, 509.453.4104, aconley@ybfwrb.org
NOAA contact: Lynn Hatcher, 509.962.8911, x-223, lynn.hatcher@noaa.gov

SE Washington Management Unit
Snake River Salmon Recovery Board
Steve Martin, 509.382.4115, steve@snakeriverboard.org
NOAA contact: Lynn Hatcher, 509.962.8911, x-223, lynn.hatcher@noaa.gov