Slide of small group discussion questions

Questions & “To Dos”

What strategies are available to help estuaries adapt to climate change?

- **Consider** the planning horizon, observed and projected climate impact, and intervention points (where in the system we can influence via management and conservation).
- **Brainstorm and list** strategies for these intervention points.

What 1 or 2 of these strategies should take top priority?

- **Consider** cost; social and political feasibility; potential for positive effects or risk of unintended negative consequences for other features or objectives; and robustness to uncertainty in future climate.
- **Brainstorm and list** actionable steps for these intervention points.
- **Consider** partners, timeline, etc.

What will be the first actionable steps to implementing these priority strategies?

- **Brainstorm and list**

What information or other resources will be needed to get there?

- **Brainstorm and list**

Report back Q2 to workshop
- We’ll collect all information
- All info in summary and to ODFW
- Results for OCS update

Table locations of groups

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Food
Small group discussions

Group 1
Tony D’Andrea, John Christy, Bill Bridgeland, Laura Brophy, Georgeanne Ferdun, Scott Bailey, Gareth Ferdun

Top Strategy

- Work with land use planning process to preserve connectivity and opportunities for habitat migration (#1 strategy)
 - Land use planning, permitting, agency review development
- **ACTION ITEMS**
 - Map areas of vulnerability
 - Map areas without obstacles to migration
 - Develop protection for these lands
 - Work with agencies and local government to incorporate these areas into permit evaluation
 - Consider wetlands and uplands in this process
- **KNOWLEDGE GAPS**
 - Salinity regimes
 - Sediment regimes
 - How forest/upland changes with climate will change inputs to estuaries
 - How ocean changes with climate will change inputs to estuaries

Strategies Discussion

- Work with land use planning process to adapt to climate and keep opportunities open
- Restoration – keep emphasis on natural process
 - Adaptive planning
 - Identify and select sites with room for habitat migration
- Develop conversations around land use/ownership conflicts that will arise with loss of coastal land – tidal lands changing
- **Data gaps:** Improve knowledge of the accretion process
 - Improve local on-the-ground data of sediment regimes
 - Improve knowledge of the salinity regimes
- **Data gaps:** Improve recognition and protection of middle and upper estuarine now (especially in anticipation of movements of humans into these areas with climate change; also because currently this is “underserved” habitat)
• **Data gaps:** Improve knowledge of impacts to uplands, forests, etc. and how this will feedback to estuaries (i.e., changes in woody debris, precipitation change influence on water inputs to estuaries)
• **Data gaps:** Improve knowledge of how ocean changes (currents, pH, etc.) will influence inputs to estuaries
• Watershed level planning
• Forest management planning to help moderate perturbations to estuaries
• Ag land management planning

Actions Discussion

• Develop contingency plans
• Mapping zones of risk/opportunity in land use planning
 - Identify areas impacted by sea level rise (vulnerabilities – infrastructure, habitat, etc.)
 - Identify areas of opportunities (i.e., where obstacles are not in the way for habitat migration); prevent new obstacles
 - Identify constraints (roads, topographic features)
• Restoration and conservation of land
• Identifying role of government responsibility for land that will be impacted
• Look at precedent on beach front
• Add climate change aspects to permitting process (as one of the permit criteria)
 - Give tools to staff in order to do this (especially maps)
• ODFW to guide local government
• Get local government (county) etc. to include these issues in their permitting of new infrastructure
• Model how all estuaries/all types of estuaries in Oregon will respond to sea level rise
 - Identify most vulnerable types of estuarine habitats
 - Include uplands/wetlands for connectivity issues
• Protect up-watershed resources since lower-level resources may be impacted
• Channel set-backs
• Tidal set-backs
• Self-regulating tide-gates on agricultural lands
• Ag lands
 - Avoid development
 - Identify priority areas to take out of production when opportunities arise
 - Easements

Group 2

Strategies Discussion (Strategies in Priority Order for each one)

- Connectivity and Migration
 - Easements and Acquisitions
 - Removing and Breaching Dikes and Tidegates
 - Mitigation to: redistribute sediments; recreating vulnerable habitats
 - Creating green infrastructure (bridges on major highways for estuaries). (Analyze existing infrastructure in estuaries to determine how to reduce their impacts).

 Info Needs:
 - Where to work based on climate change (what places should acquisition and mitigation occur)
 - Distribution of ecological habitats and at risk species

- Hydrological modification and restoration (including salinity)
 - Recreating channel sinuosity
 - Sediment enhancement
 - Invasive species control
 - Addition of woody debris
 - Planting natives
 - Assisted migration

 Info Needs:
 - Bathymetry
 - Salinity
 - Sediment Budgets and Transport

- Policy Strategies
 - Educating county commissioners about climate change impacts – education of outreach. Demonstrating costs and benefits.
 - Development Constraints – modify land use laws (rolling easements). Incorporate climate change information into permitting.
 - Incentives (to prevent development).
 - Changes in insurance policy, to reflect actual costs, expansion of the federal flood insurance program (FIRM) or ideas. (Redefine floodplains) Require bonding to rebuild.
 - Retreat (approach to identify and move development, structures).
 - Salmon as commodity. (Payment for Ecosystem Services?)

What information do we need?
1. Actual economic costs of development decisions.
2. Online training for coastal goals.

Group 3
Cheryl Hummon, Jon Wickersham, Celeste Coulter, Darrin Sharp, Steve Zack, Jason Kirchner, Nadia Gardner, Jason Ainsworth, Anna Buckley
Summary of Strategies

- Strategic land conservation (#1 strategy)
- Restoration – tidal, beavers, etc. (#2 strategy)
- Land use planning (#3 strategy)
- BMPs for development
- Engineering solutions to maintain desired estuarine functions
- Control invasive species
- Funding - direct to highest ecological functions

Strategies Discussion (plus some actionable items...)

- Ducks Unlimited – farmland conservation for flexibility, wetland migration inland, F & R Protection Program – ag easements not that much
- Build on [“add to”???] currently conserved lands (federal and state) with wide variety represented and manage collectively.
 - Most in lowlands now – need uplands/adjacent
 - Purpose – prevent development
 - More strategic approach than in the past
 - Land trusts transfer lands to agencies
 - Willing sellers (getting out of farming; dikes coming down)
 - Identify land based on intuition
- Ducks Unlimited (continued)
 - Returning tidal flows brings in good helpful critters
 - Remove impediments to tidal flow
 - Need acquisition and natural functions
 - Will tidal activity repair subsidence that occurred when water was gone?
 - No stumps/trees, no hummocks – add?
- Land use planning
 - City and county
 - Incorporate future impacts to expand current policies base on future impacts
 - Enforcement, reduce variances and conditional uses
 - Planners want economic development, not restoration
- Introduce native species into the system
 - Beavers up in watershed (not in estuary)
 - Filtering capacity of invertebrates
- Non-native species (plants) ---- “control invasive species”
 - Salt water invasives could increase
 - Early detection of north-migrating invasives from California
- Best Land Use Management Practices – design considerations for protecting existing infrastructure
 - For new development – practices such as bridges rather than dikes
 - Areas for no development
Better marriage of development and restoration and mitigation – where they go

FEMA/flooding & dikes -> landowner willingness to sell
 - Loss of ability to get flood insurance – fewer houses in flood zone
 - Need restrictions – cannot rebuild in flood zone
 - Dike management – some unmaintained or responsibility to landowner – kinds not productive – more landowners want out
 - FEMA based on old data – updates needed, new flooding regimes use new data to define
 - Balanced cut and fill isn’t good enough

Engineering approach
 - Add dikes to protect and control current wetlands?
 - Create new habitat? (not restoration)
 - This can add a specific function but may not be an adaptation strategy
 - Dredge spoils – raise levels of land that may be inundated
 - Approach may be useful when focused on a specific species with critical need
 - Better = natural processes

Funders -- focus on undeveloped estuaries
 - And land adjacent -> for habitats to move
 - Or for estuaries with highest ecological function? (i.e., protect the best)

Group 4
Cheryl Brown, Justin Saarinen, Fran Recht, Allison Aldous, Jim Morgan, Art Martin, Bruce Taylor, Dan Shively, Erin Stockenberg, Stacy Gallagher, Dave Plawman

Strategies Discussion
 - identify opportunities for estuary migration to maintain estuary function (#1 strategy)
 - Land use
 - Hydrological
 - Identify future acquisition/easement
 - Identify elements to address
 - Water quality
 - Sedimentation
 - Scientific Analysis ~ transparency
 - Decision points
 - Understanding the process
 - Develop knowledge network
 - Downscaled
 - Mapping and Modeling
 - Data layer creation - constraints, protected shoreline, vulnerability, habitat, LiDAR
 - Suite of analysis – strengths/weaknesses
 - Run models with various scenarios (i.e., dike removal)
• Wetlands planning
• Transportation – green infrastructure = migration potential
• Restoration planning
• Prioritize estuary value
 o Identify potential future resource areas
 o “risk analysis”
 o Demonstration sites
 o Social value
• Diversified portfolio (elevation, resiliency)
• Futures
• Monitoring – in restoration sites, learn from past use in planning for future
• Protect intact, project future need
• Watershed Protection Standards
 o Increased population = increased impacts
• Education and regulation on nutrient loading etc.
• Testing resiliency for adaptation strategies against major catastrophic events (e.g., corridors, etc.)
• Creative land use planning
 o Collaboration on easements

Group 5
Esther Lev, Debbie Reusser, Bob Buckman, Henry Lee II, Mike Gray, Stan Van DeWetering, Craig Cornu, John Bauer, Shawn Stephensen

Strategies Discussion
• Identify low areas – future not past
• Zone – regulate development
• Easement land trusts
• Road improvement – prioritize with transportation and their pinch or problem areas and potential conservation opportunities that alleviate the problem but promote ecological benefit
• Build on tsunami plans – call it “slow tsunami”, expand the geographic scope, impact, etc.
• Roads – ODOT, ODFW, county – engage in comprehensive visioning, problem solving, opportunity which infrastructure may not be repaired over time, etc.
• Update FEMA maps with LiDAR, 2 meters above high tide. Change regulatory programs to match better information
• Expand outreach.
 o Change words, not use “climate change” or punitive type language
 o Prefer the term “water catchment”
 o Look for common interests, opportunities
• Identify problems that we can look for new creative solutions