An Evaluation of Study Design, Biases, and Limitations of Pre- and Post-Construction Studies

Wally Erickson
Outline

• Pre-Construction Studies
• Post-Construction Studies
Pre-Construction Studies

- Diurnal Avian Use Surveys
- Raptor Nest Surveys
- Radar Surveys
- Bat Surveys
Examples: Pre-Construction Objectives

• Quantify to the relative abundance of birds in the project area
• Use to predict a range of mortality anticipated from the project
• Document presence/absence of a rare species
• Collect quantitative data pre-construction that will be compared to post-construction data to estimate an impact from the project (e.g., displacement)
Avian Use Surveys

- Surveys focusing on quantitative measures of utilization primarily for large birds (raptors, waterfowl etc.)
 - Hawk-watch type surveys or point count surveys
 - Predict Impacts
 - Micro-siting
Annual Raptor Use

Raptors

Wind Energy Facility
Diurnal Avian Use Surveys

• Limitations
 – Viewshed differences
 – Distance bias
 – Use vs. abundance
 – Migrant vs. Resident
 – Different time durations

• Comparing similar metrics among sites is strength
Raptor Nest Surveys

• Ground vs. aerial
• Coniferous forest methods vs. open habitat
• Small sample sizes for effects at individual Projects
• Most studies are before/after designs
Nests move over time
Can compare sites in terms of nest density
Note: These data are preliminary and are not guaranteed to be accurate or complete. Please contact Jim Watson, WDFW (watsojww@dfw.wa.gov) before citing.
Marine Radar Methods

• **Strengths**
 – Sees at night
 – Accurate flight height information
 – Comparability among sites
 – Confirmation of broad-front migration

• **Weaknesses**
 – No true target identification
 – No species identification
 – No correlation with post-construction fatality
 – Technology Effects
 • Power of unit, automated vs. manual data collection, range, etc.
 – Detection bias 3-Dimensional
Marine Radar Studies for Wind Projects in the U.S.

Note: Map does not contain all radar studies conducted.
Radar Metrics

• Passage Rate – expressed as:
 number of targets / km of migratory front / hour.

• Target Flight Direction – expressed as:
 mean direction (compass bearing) of travel

• Target Altitude or Flight Height – expressed as:
 meters above ground level or above radar level

• Percent of targets occurring below 125 meters altitude.
Radar Assumptions

• A target is one or more migrating bird or bat.

• Insects and other non-avian/bat targets can be removed from the data set.
 – screened with either data from the radar or observer criteria

• Radar viewsheds between studies are similar.
 – both horizontally and vertically

• Equipment and settings produce similar returns.
<table>
<thead>
<tr>
<th>Site</th>
<th>Passage Rates targets/km/hr</th>
<th>Mean Flight Height m)</th>
<th>% Targets below 125 m</th>
<th>Mean Flight Direction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>Cotterel Mountain, ID</td>
<td>32</td>
<td>32</td>
<td>565</td>
<td>565</td>
<td>3</td>
</tr>
<tr>
<td>Stateline, OR/WA</td>
<td>50</td>
<td>23</td>
<td>625</td>
<td>470</td>
<td>16</td>
</tr>
<tr>
<td>Nine Canyon, WA</td>
<td>98</td>
<td>31</td>
<td>472</td>
<td>127</td>
<td>15</td>
</tr>
<tr>
<td>Buffalo Ridge, MN</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean - East Studies

<table>
<thead>
<tr>
<th>Passages & Rates</th>
<th>Spring</th>
<th>Fall</th>
<th>Spring</th>
<th>Fall</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Flight Height m</td>
<td>258</td>
<td>247</td>
<td>409</td>
<td>470</td>
<td>14</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Mean - West Studies

<table>
<thead>
<tr>
<th>Passages & Rates</th>
<th>Spring</th>
<th>Fall</th>
<th>Spring</th>
<th>Fall</th>
<th>Spring</th>
<th>Fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Flight Height m</td>
<td>80</td>
<td>29</td>
<td>548</td>
<td>387</td>
<td>15.5</td>
<td>5</td>
</tr>
</tbody>
</table>
Results of Radar Studies at Proposed and Existing Wind Project Sites in the U.S.

<table>
<thead>
<tr>
<th>Site</th>
<th>Passage Rates targets/km/hr</th>
<th>Mean Flight Height m</th>
<th>% Targets below 125 m</th>
<th>Mean Flight Direction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring Fall</td>
<td>Spring Fall Spring Fall</td>
<td>Spring Fall Spring Fall</td>
<td>Spring Fall</td>
<td>Spring Fall</td>
</tr>
<tr>
<td></td>
<td>110 197</td>
<td>338 333</td>
<td>20 12</td>
<td>30 162</td>
<td>Mabee et al. 2006</td>
</tr>
<tr>
<td></td>
<td>254 152</td>
<td>422 438</td>
<td>11 5</td>
<td>40 193</td>
<td>Woodlot Alternatives 2005</td>
</tr>
<tr>
<td></td>
<td>117 94</td>
<td>397 466</td>
<td>15 10</td>
<td>14 180</td>
<td>Young et al. 2006</td>
</tr>
<tr>
<td></td>
<td>170 200</td>
<td>319 365</td>
<td>18 9</td>
<td>18 177</td>
<td>Mabee et al. 2004, 2005</td>
</tr>
<tr>
<td></td>
<td>277 193</td>
<td>370 516</td>
<td>16 3</td>
<td>22 188</td>
<td>Roy et al. 2004, Woodlot 2005</td>
</tr>
<tr>
<td></td>
<td>395 238</td>
<td>528 532</td>
<td>4 5</td>
<td>29 199</td>
<td>Cooper et al. 2004a,b</td>
</tr>
<tr>
<td></td>
<td>409 380</td>
<td>291 664</td>
<td>25 3</td>
<td>31 223</td>
<td>Woodlot Alternatives 2005</td>
</tr>
<tr>
<td></td>
<td>160 732</td>
<td>418 422</td>
<td>6 3</td>
<td>29 213</td>
<td>Woodlot Alternatives 2005a,b</td>
</tr>
<tr>
<td></td>
<td>509 691</td>
<td>419 516</td>
<td>20 4</td>
<td>44 198</td>
<td>Woodlot Alternatives 2005</td>
</tr>
<tr>
<td></td>
<td>158</td>
<td>415</td>
<td>8</td>
<td>184</td>
<td>Gary, pers. comm. 2006</td>
</tr>
<tr>
<td></td>
<td>170 168</td>
<td></td>
<td></td>
<td>21 179</td>
<td>Cooper and Mabee 2000</td>
</tr>
<tr>
<td></td>
<td>122</td>
<td></td>
<td></td>
<td>181</td>
<td>Cooper and Mabee 2000</td>
</tr>
<tr>
<td></td>
<td>192 225</td>
<td></td>
<td></td>
<td>12 184</td>
<td>Cooper et al. 1995</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td></td>
<td></td>
<td>18</td>
<td>Cooper et al. 1995</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td></td>
<td></td>
<td>181</td>
<td>Cooper et al. 1995</td>
</tr>
<tr>
<td></td>
<td>404 178</td>
<td>523 556</td>
<td>6 4</td>
<td>47 203</td>
<td>Roy and Pelletier 2005, 2005</td>
</tr>
<tr>
<td></td>
<td>187</td>
<td>436</td>
<td>8</td>
<td>188</td>
<td>Plissner et al. 2005</td>
</tr>
<tr>
<td></td>
<td>174</td>
<td>448</td>
<td>7</td>
<td>219</td>
<td>Plissner et al. 2005</td>
</tr>
<tr>
<td></td>
<td>199</td>
<td>410</td>
<td>16</td>
<td>184</td>
<td>Mabee et al. 2004</td>
</tr>
<tr>
<td>Mean - East Studies</td>
<td>258 247</td>
<td>409 470</td>
<td>14 6.5</td>
<td>31 193</td>
<td></td>
</tr>
<tr>
<td>Cotterel Mountain, ID</td>
<td>32</td>
<td>565</td>
<td>3</td>
<td>155</td>
<td>Cooper et al. 2004</td>
</tr>
<tr>
<td>Stateline, OR/WA</td>
<td>50 23</td>
<td>625 470</td>
<td>16 6</td>
<td>9 165</td>
<td>Mabee and Cooper 2002</td>
</tr>
<tr>
<td>Nine Canyon, WA</td>
<td>98 31</td>
<td>472 127</td>
<td>15 8</td>
<td>23 181</td>
<td>Mabee and Cooper 2000, 2001</td>
</tr>
<tr>
<td>Buffalo Ridge, MN</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>Hawrot and Hanowski 1997</td>
</tr>
<tr>
<td>Mean - West Studies</td>
<td>80 29</td>
<td>548 387</td>
<td>15.5 5</td>
<td>16 167</td>
<td></td>
</tr>
</tbody>
</table>
Results of Radar Studies at Proposed and Existing Wind Project Sites in the U.S.

<table>
<thead>
<tr>
<th>Site</th>
<th>Passage Rates targets/km/hr</th>
<th>Mean Flight Height m</th>
<th>% Targets below 125 m</th>
<th>Mean Flight Direction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
</tr>
<tr>
<td>Cotterel Mountain, ID</td>
<td>32</td>
<td>32</td>
<td>565</td>
<td>565</td>
<td>3</td>
</tr>
<tr>
<td>Stateline, OR/WA</td>
<td>50</td>
<td>23</td>
<td>625</td>
<td>470</td>
<td>16</td>
</tr>
<tr>
<td>Nine Canyon, WA</td>
<td>98</td>
<td>31</td>
<td>472</td>
<td>127</td>
<td>15</td>
</tr>
<tr>
<td>Buffalo Ridge, MN</td>
<td>93</td>
<td>93</td>
<td>410</td>
<td>410</td>
<td>16</td>
</tr>
<tr>
<td>Mean – West Studies</td>
<td>80</td>
<td>29</td>
<td>548</td>
<td>387</td>
<td>15.5</td>
</tr>
<tr>
<td>Mean - East Studies</td>
<td>258</td>
<td>247</td>
<td>409</td>
<td>470</td>
<td>14</td>
</tr>
</tbody>
</table>

Reference:
- Mabee et al. 2006
- Woodlot Alternatives 2005
- Young et al. 2006
- Mabee et al. 2004, 2005
- Roy et al. 2004, Woodlot 2005
- Cooper et al. 2004a,b
- Woodlot Alternatives 2005
- Woodlot Alternatives 2005a,b
- Gary, pers. comm. 2006
- Cooper and Mabee 2000
- Cooper and Mabee 2000
- Cooper et al. 1995
- Cooper et al. 1995
- Cooper et al. 1995
- Roy and Pelletier 2005, 2005
- Roy et al. 2005, 2006
- Plissner et al. 2005
- Plissner et al. 2005
- Mabee et al. 2004
Predictability of Impacts from Radar Studies

- Few studies with radar and mortality
- All sites show targets migrating through
- Most sites show low % of targets at rotor heights and below
- Confirmation of broad-front hypothesis
- Mortality of migrants relatively low
 - No large events at wind projects
 - Comm. Tower research suggests structures < 500 feet not very risk
 - Turbines are getting larger
Bat Emergence
NEXRAD

Reflectivity

Radial Velocity

dBZ

Knots
Nexrad Applications

- Investigate broad front hypotheses
- Relative comparisons of migration intensity
- Archived information – data from past
- Short-comings
 - 20 miles away from unit = 1000 ft above ground level
 - Target identification
Study Designs for Displacement/Avoidance Studies

- Impact/Reference Designs
- Before/After Designs
- Before/After Reference/Impact Designs
- Gradient Designs

![Graph showing Grassland Species](image)
• Reference/Impact Design
 – Assumes differences due to turbines, but differences in study areas confounded
Mountain Plovers at FCR

- Before/After Control Impact Design
Mountain Plover

- Mortality
- Initial Impression: Displacement
- Numbers inhabiting the wind plant site declined during construction:

![Graph showing estimated population size over time]

Estimated Population Size

Construction Period
However…

- Reference area numbers declined from 30 to 5 for the same period.
- Regional decline occurred during late 1990s at the Pawnee National Grasslands, Colorado (Fritz Knopf, USGS, pers. comm.).
GRASSLAND SONGBIRD DISPLACEMENT - Stateline

- Before/After Gradient Design
- Transects in suitable habitat perpendicular to strings
- Small-scale impact detected
- Confounding between temporary habitat impacts and displacement
Bat Surveys
Bat Surveys

• **Anabat/Weaknesses**
 – Yet to be shown to be a predictor
 – No species information
 – Use vs. Abundance
 – Small sampling viewshed
 – Habitat differences from pre to post construction

• Fatality results from nearby facilities “best” method for predicting impacts

• Bat call rates **may be** useful in predicting fatality rates in the absence of fatality data

• Mist-netting shows limited use – most fatalities are migratory species
Fatality Monitoring Objectives

- determine whether overall avian and bat fatality rates or raptor fatality rates are low, moderate, or high relative to other projects
- Determine whether raptor mortality is low, moderate or high
- Determine whether predicted mortality is a reasonable estimate
- Determine whether a wind project has a fatality problem
Approximate search hours

<table>
<thead>
<tr>
<th># Turbines</th>
<th>migration</th>
<th>non-migration</th>
<th>hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1</td>
<td>7</td>
<td>5686</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>7</td>
<td>11371</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>7</td>
<td>17057</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>14</td>
<td>2143</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>14</td>
<td>4286</td>
</tr>
<tr>
<td>60</td>
<td>3</td>
<td>14</td>
<td>6429</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>7</td>
<td>2086</td>
</tr>
<tr>
<td>40</td>
<td>7</td>
<td>7</td>
<td>4171</td>
</tr>
<tr>
<td>60</td>
<td>7</td>
<td>7</td>
<td>6257</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>14</td>
<td>1043</td>
</tr>
<tr>
<td>40</td>
<td>14</td>
<td>14</td>
<td>2086</td>
</tr>
<tr>
<td>60</td>
<td>14</td>
<td>14</td>
<td>3129</td>
</tr>
</tbody>
</table>

Values under migration and non-migration represent the interval between searches in days
Assumes 2 hours per search
• Negative correlation: fatalities and wind speed

\[r = -0.60 \] for MEYERSDALE

\[r = -0.30 \] for MOUNTAINEER
Variance in Fatality Estimates

- Turbine to turbine variation in observed fatality
 - General has been low
- Scavenging rates
- Observer detection

\[m = \frac{C}{\pi} \]
Potential Biases in Field Methods

- Some casualties or injured specimens may land or move outside the search area
 - Solution 1: ignore, if a small percentage
 - Solution 2: estimate the percentage

Arrows indicate direction of possible bias.
Example Carcass Search Plot

130 m

87 m

63 m

Turbine Transects

Sampled Area

Unsampled Area

W N E S
Distribution of Distances from Bird Fatalities to Nearest Turbine

Nine Canyon
62 m rotor diameter
92 m to tip of blade

Distribution of Distances from Bat Fatalities to Nearest Turbine

Nine Canyon
62 m rotor diameter
92 m to tip of blade

Estimate <10% missed based on this distribution
Caution: Flat, mostly songbirds

Estimate <5% missed based on this distribution
Caution: Flat
Distribution of Bat Fatalities
Distribution of Bat Fatalities

![Bar chart showing distribution of bat fatalities in different categories. The chart compares fatalities in two distance categories (<40 m and >40 m). The categories are divided into humans (CA, MT, MY) and dogs. The chart indicates a higher percentage of fatalities in the <40 m category.]
Reference or Background

Mortality
Studies of Reference Mortality

• Buffalo Ridge, MN
 – Estimates of fatality rate at plots without turbines 1/3 of estimate at turbines

• Other examples, Montana site (Harmata, NREL), San Gorgonio, Buffalo Mountain
Potential Biases in Trials

- Experimental carcasses/trials may not represent wind turbine casualties
 - **Possible Problem:** Feather spots may be more or less visible than intact carcasses used in trials.
 - **Possible Problem:** Placement and number of carcasses not representative of real mortality (“scavenger swamping”)
 - **Possible Problem:** are small birds representative of bats? Thawed vs. Fresh
Feather Spots

Feather Spots considered as project-related fatalities
Variance in Fatality Estimates

- Turbine to turbine variation in observed fatality
 - General has been low
- Scavenging rates
- Observer detection

\[m = \frac{\bar{C}}{\pi} \]
Probability of being Available and Detected

• Early formula \((m=(c*l/(t*p)))\) “ok” when interval greater than mean removal time
 – Modification used (remove \(l/t\))
• When mean removal time greater than interval, detection distribution assumption important
Fatality Monitoring Process
Detection Rates by Age of Carcass
Recommendations

- Do removal trials early to determine if changes to search interval are necessary
- If searcher efficiency low and scavenging high relative to search interval, estimates will be highly uncertain
- Need to do more trials with bats

\[m = \frac{c}{\pi} \]
Searcher Efficiency - Dogs

- 71% - Mountaineer
- 82% - Meyersdale
- On average, ~2-4 times better than human observers
- In low visibility habitats, even higher