Oregon Hatchery Research Center
2016 Annual Report

To:
Oregon Legislature
State Fish and Wildlife Director
State Fish and Wildlife Commission

By:
Oregon Hatchery Research Center Board

March 9, 2017
Executive Summary

This is the third annual report by the Oregon Hatchery Research Center Board to the Oregon Legislature, Oregon Department of Fish and Wildlife Director and the State Fish and Wildlife Commission. Highlights of the report include:

- Positive work towards an OHRC Communications Plan;
- Research activities conducted in 2016 by the OHRC and collaborators in relationship to the mission and goals for the OHRC, including:
 - Continued implementation of the OHRC Research Plan which addresses three research areas:
 1. If and how the differences in mate selection between hatchery and wild fish influences the reproductive success of hatchery fish in the wild, and how practices could be improved to increase the reproductive success of hatchery fish.
 2. If and how hatchery rearing practices alter the selection of traits with resultant fitness consequences, and how hatchery practices could be altered to minimize hatchery versus wild fitness differences related to selection in the hatchery.
 3. If and how manipulation of hatchery rearing and water can improve olfactory imprinting by juvenile salmonids and homing of adults to their hatchery of origin;
 - Continued implementation of other research conducted at the OHRC;
- Activities of the Board in 2016 and the focus for the Board in 2017; and
- Appointment of replacement board members by the ODFW Director.
Introduction:

This report fulfills the Oregon Hatchery Research Center Board’s (OHRC Board) requirement to report to the Legislative Assembly, the State Fish and Wildlife Director and the State Fish and Wildlife Commission each calendar year on the findings of research projects carried out by the Oregon Hatchery Research Center and any recommendations regarding current hatchery management practices based on the research projects.

This report constitutes the fourth report of the OHRC Board to the Legislative Assembly, the State Fish and Wildlife Director and the State Fish and Wildlife Commission. In this report, we detail the activities of the Board to date, describe the funding and implementation of the Research Plan for the OHRC adopted by the Board in 2014, outline progress to create an ODFW fish geneticist position, and research findings and recommendations from research conducted at the OHRC in 2015.

2016 OHRC Board:

Per the direction in HB 3441 for establishing the OHRC Board, the Oregon Department of Fish and Wildlife Director is to appoint a 15 member board consisting of 12 voting members and 3 non-voting members.

The 12 voting members shall represent the following interests:

1) Oregon Salmon Commission
2) Columbia River gillnet salmon fishery
3) wild fish advocacy organizations (2 members)
4) statewide sport angling organizations (2 members)
5) agricultural industry
6) coastal ports
7) forest products industry
8) the independent scientific community
9) fish habitat restoration interests
10) Oregon Indian tribes

The 3 non-voting members of the board shall represent:

1) Oregon Department of Fish and Wildlife
2) Oregon State University
3) federal agency related to fish management

Table 1 identifies the current board members and their designated terms. The Board is currently led by Cam Parry as the Board chair and Scott Starkey and Lindsay Ball as the vice-chairs.

Table 1: OHRC Board members by interest group and term of appointment.
OHRC Board Terms Expiring and Resignations:
Four OHRC Board position terms ended July 1, 2016. These positions represented agriculture, coastal ports, Oregon Indian tribes, and Columbia River gillnetters. Chuck Pavlik agreed to remain for a second term representing coastal ports, and was re-appointed by ODFW Director Melcher in September, 2016. The three other board members with expiring terms did not choose to continue on with the Board, and an advertisement for those positions was released in October, 2016.

In addition to the three board members not seeking a second term, the member representing the Oregon Salmon Commission resigned his position in September, 2016. This position was also advertised for in the October advertisement.

ODFW received interest to fill the Oregon Indian tribes’ position and the Oregon Salmon Commission position. Dr. Maureen Hess was appointed to fill the Oregon Indian tribes’ position on the OHRC Board by Director Melcher in December, 2016. Dwight Collins was appointed to fill the Oregon Salmon Commission position by Director Melcher in November, 2016.

Efforts continue to find candidates for the agriculture and Columbia River gillnetters positions.

OHRC Board Activities in 2016:

Overview
The OHRC Board oversaw the implementation of the OHRC Research plan throughout 2016 with regular updates provided at each board meeting. The Board also began work during the year on a communications plan for the OHRC to ensure public support and funding for the important work conducted at the OHRC.

Board Meeting Highlights
The OHRC Board met at the OHRC on March 15, 2016. The Board received an update on progress implementing the OHRC Research Plan. The Board reviewed and approved the 2015 OHRC Annual Report. A far ranging discussion was had related to outreach and education through the OHRC. The OHRC Board has been supportive of the Alsea Sportsmen’s Association’s efforts to educate fifth grade classes in the OHRC area about the salmon life-cycle and habitat needs. Board member Chuck Pavlik has worked closely with the group to secure donations and assist with planning and conducting the school field trips to the OHRC. The Board also discussed developing an outreach, or communications, plan that could be used to inform key constituents about what is going on at the OHRC in order to maintain and

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sport Angler</td>
<td>Jack Smith</td>
<td>07/01/19</td>
</tr>
<tr>
<td>Sport Angler</td>
<td>Lindsay Ball</td>
<td>07/01/17</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Vacant</td>
<td>07/01/20</td>
</tr>
<tr>
<td>Ports</td>
<td>Chuck Pavlik</td>
<td>07/01/20</td>
</tr>
<tr>
<td>Forestry</td>
<td>Scott Starkey</td>
<td>07/01/19</td>
</tr>
<tr>
<td>Independent Science</td>
<td>Steve Jacobs</td>
<td>07/01/17</td>
</tr>
<tr>
<td>Habitat Restoration</td>
<td>Cam Perry</td>
<td>07/01/19</td>
</tr>
<tr>
<td>Tribes</td>
<td>Maureen Hess</td>
<td>07/01/20</td>
</tr>
<tr>
<td>Federal</td>
<td>Charlene Hurst</td>
<td>Indefinite, non-voting</td>
</tr>
<tr>
<td>USU</td>
<td>Carl Schreck</td>
<td>Indefinite, non-voting</td>
</tr>
<tr>
<td>ODFW</td>
<td>Bruce McIntosh</td>
<td>Indefinite, non-voting</td>
</tr>
</tbody>
</table>
increase support for the OHRC and the research being conducted collaboratively with OHRC scientists. A presentation was given to the Board by OSU Masters student William Hemstrom related to genetic work he has conducted in relation to genetic differences in steelhead found in the Siletz River. The Board discussed and developed the key issues they would focus on in 2016. See the following link for board meeting minutes (http://www.dfw.state.or.us/fish/OHRC/minutes.asp).

The OHRC Board met again at the OHRC on June 7, 2016. State Representative Wayne Krieger attended the meeting. The Board received updates from various members on activities related to the OHRC that they were involved with since the last meeting. An update was given to the Board on implementation of the OHRC Research Plan, as well as the status of the OHRC Research Fund. The Board continued discussions on developing an outreach/marketing plan. The Board also had a discussion related to their role in applying research results on the ground, and agreed that the Board’s role is to provide recommendations to ODFW. The Board received a presentation from the Wild Rivers Coast Alliance on their grantmaking organization on the South Coast of Oregon. See the following link for Board agenda and minutes (http://www.dfw.state.or.us/fish/OHRC/minutes.asp).

The Board next met at the OHRC on September 13, 2016. Board members gave updates on education efforts in local schools and issues of interest to them. ODFW gave the quarterly update on the OHRC Fund revenues and expenditures, made the Board aware of the upcoming OHRC Fall Festival, and updated the Board on vacancies on the OHRC Board due to expiring terms and one resignation. An extensive update was given to the Board on each of the three research projects that make up the OHRC Research Plan followed by a group discussion related to the development of an OHRC Communications Plan. See the following link for board agenda and minutes (http://www.dfw.state.or.us/fish/OHRC/minutes.asp).

The last OHRC Board meeting of 2016 was held on December 6, 2016 at the OHRC. The Board was introduced to a new member (Dwight Collins) who was recruited and appointed by ODFW Director Melcher since the last board meeting. Joseph O’Neil was congratulated on being selected as the new manager of the OHRC. Chuck Pavlik provided an update on educational activities he has been involved with along with the Alsea Sportsmen’s Association. Dr. Selina Heppell (OSU’s Department Head for Fisheries and Wildlife) updated the Board on two topics related to educating the public about the OHRC. ODFW updated the Board on the upcoming legislative session and the Governor’s approved budget, as well as the quarterly update on the OHRC Research Fund revenues and expenditures. The Board received updates from the three OHRC Research Plan projects on their research that is underway. Updates were also provided on several research projects that are affiliated with the OHRC. The Board began final discussions on development of an OHRC Communications Plan. See the following link for board agenda and minutes (http://www.dfw.state.or.us/fish/OHRC/minutes.asp).

OHRC Board Focus in 2017:
The OHRC Board will be meeting on March 7, 2017 to discuss the areas they hope to focus on in 2017. Based on past discussions, potential areas of focus may include:

- Develop long-term research priorities for studies in addition to those identified in the OHRC Research Plan;
- Develop and implement a focused outreach strategy to better inform the fishing community, the general public, public officials and other interested parties on how the OHRC is working to address their mission; and
Advise ODFW, OSU and the OHRC Director on priorities and research implementation at the OHRC.

OHRC Activity Report 2016:

Overview

Our most important research activity was the implementation and initiation of the OHRC Research Plan, consisting of three (3) Research Projects. Detailed information on the Research Plan (approved in 2014) and the individual Research Projects is provided in the OHRC Research Plan. Funding for the Research Plan was confirmed effective 1 July 2015, subject to formal agreements between ODFW and Oregon State University. Each of the three primary investigators (Banks, Blouin, Noakes) completed international searches for Postdoctoral Research Scholars to work on each Research Project. Drs. Mike Garvin, Maryam Kamran and Heather Auld were hired for the three research projects. An additional Postdoctoral Researcher, Dr. Delia Shelton, supported by a 3-year NSF Fellowship also joined the Research Project being led by Dr. Noakes. Expenditure of research funds on personnel, supplies and operations commenced as soon as approved by Oregon State University (January 2016).

The research topic called for in the OHRC Research Plan and headed by Dr. Michael Blouin (differences caused by hatchery rearing, or domestication selection) continued as planned, with genetic analyses of hatchery fish reared at different densities looking for genes under selection. One hypothesis has been disproven (rearing density is a selective mechanism in the hatchery). The results suggested a second hypothesis related to growth that was tested during 2016. Completion of that test will be completed early in 2017, with a report and interpretation of results to the OHRC Advisory Board.

The Research Project headed by Dr. Michael Banks (genetics and mate choice) progressed as planned during 2016. Drs. Bank and Auld also developed a Research Proposal to be submitted to NSF to be considered for funding in February 2017. This team analyzed existing genetic databases (coho, Chinook and steelhead) to select the most appropriate tissue samples and genes to be analyzed for their pedigree study. They have chosen the most appropriate candidate genes in males and females that they will analyze in relation to mating success and survival of resulting young from those matings. Dr. Auld began an analysis with Dr. Noakes of genetic samples previously carried out on mate selection by steelhead in the stream channels at the OHRC.

The Research Project headed by Dr. David Noakes involved collaborations with colleagues from the University of Washington (Seattle), NOAA (Seattle), the Leipzig Institute (Berlin, Germany) and ODFW. They completed the second year of water samples from the Elk and Sizes rivers in southern Oregon to determine the chemical nature of the river water at the time of returning adult Chinook salmon. The water samples are being analyzed (amino acids, dissolved organic matter, dissolved carbon compounds) to characterize the various river tributaries in relation to the numbers of returning hatchery-origin Chinook salmon that stray into each tributary. The first year of testing behavioral responses of young Chinook salmon to selected test chemicals took place at the OHRC. We also measured the olfactory receptor responses of salmon to selected chemicals in the NOAA (Seattle) laboratory. Chinook salmon embryos from the ODFW Elk River Hatchery were brought to the OHRC where they were reared under controlled conditions prior to testing their behavioral responses to test chemicals.

Detailed schedules, timelines and research activities for all three Research Projects are provided as Flow Charts in the Research Plan. Initial reports to the OHRC Advisory Board on the three Research
projects took place during all the regularly scheduled Board meetings in 2016. In addition, all members of the three Research Projects met at bimonthly intervals to update on research results, coordinate research activities and coordinate ongoing research plans. Reports of those meetings were submitted to the OHRC Advisory Board at their regular meetings.

ODFW worked closely with OSU to develop a state fisheries geneticist position that was partially funded by the 2015 Oregon Legislature. The position will be shared between ODFW and OSU and will serve as the state’s fisheries genetics expert. A workshop was held in December, 2015 to solicit ideas from prominent scientists in the Pacific Northwest on what the position should look like and what areas of focus should be. That produced a position description that was used for the international search to fill this position. The Search Committee, including Drs. Noakes and Schreck, as well as representatives from ODFW and OSU met on a number of occasions to review applications, interview candidates and make recommendations for the appointment. We expect that position to be filled early 2017, with the new faculty member to take up residence and begin research by autumn 2017.

In addition, the OHRC addressed our Mission, as approved by the OHRC Advisory Board through activities listed here, and provided in greater detail later in Appendix 1 to this Report. We addressed our Mission in 2016 with a number of Research Projects, Research Workshops, Educational Projects and Outreach Activities. This involved active research collaboration with colleagues from the Oregon Department of Fish and Wildlife, the Oregon State University, the University of Oregon, the US Geological Survey, the US Fish and Wildlife Service, NOAA Fisheries, the University of Hawai‘i, the University of North Carolina, the University of Washington – Seattle, the Makah Tribal Fisheries, the Liepzig Institute of the University of Berlin (Germany), the University of Miami, North Carolina State University, Dartmouth College, the USFWS (Vermont) and the University of California – Davis. Several postgraduate students, postdoctoral research scholars and technical staff, supported by external funding, have contributed to these efforts as well. Drs. Michael Banks, Michael Blouin, Kathleen O’Malley, Andy Dittman, Jessica Miller, Tom Quinn, Ken Lohmann, Kathleen Cole, Ben Clemens, Jason Dunham, Nathan Putman, Karen Cogliati, Camille Leblanc and Marc Johnson are the principal collaborators on these research projects.

We attracted about $1.5 million for educational and research activities in 2016 with numerous collaborators at the OHRC from a variety of sources, including the National Science Foundation, the Bonneville Power Administration, the US Army Corp of Engineers, Oregon Sea Grant and international funding sources. Results of our activities were reported to the OHRC Board, to ODFW, to local, regional, national and international meetings and were published in the primary scientific literature.

The activities described above and in Appendix 1 occurred during 2016. Activities and research results that have taken place in previous years can be found on the OHRC website at: http://www.dfw.state.or.us/fish/OHRC/news.asp. These earlier reports can show the reader the progression of research activities at the OHRC, as well as the development and funding of the OHRC Research Plan.

OHRC Mission

The first goal in our Mission is to:

1. **Understand mechanisms that may create differences between hatchery and wild fish.**
 a. Determine the process and rate by which wild fish may change in the hatchery environment within and across generations.
b. Determine the process, rate and pattern by which hatchery-produced fish adapt to the natural environment at each life history stage.
c. Determine the possible genetic and ecological consequences of hatchery fish and their releases on native fish at each life history stage.

We have addressed these questions with the following research projects in 2016:

1.a. Domestication selection (steelhead) – Blouin, Noakes
1.a., b. Non-genetic influences on early growth and development (Chinook, steelhead) – Schreck, Noakes, Cogliati
1.b. Effect of climate change on development and sex change (steelhead) – Cole, Schreck, Noakes, Blouin
1.b. Steelhead wild surrogates – Schreck, Noakes, Cogliati
1.b. Chinook wild surrogates – Schreck, Noakes, Cogliati
1.b. Behavior and survival of hatchery and wild steelhead smolts – Schreck, Noakes, Thompson, Leblanc
1.c. Alsea steelhead population genetics – Banks, O’Malley, Noakes
1.c. Outplanting and angler harvest of Alsea River steelhead – OHRC, ODFW
1.c. Homing and straying in Chinook and steelhead – Noakes, Blouin, Putman, Dittman, Johnson, Schreck, Kamran

The second goal in our Mission is:

2. **Develop approaches to manage hatchery fish that conserve and protect native fish.**
 a. Determine hatchery breeding, rearing and release practices that allow hatchery-propagated fish to both contribute to fisheries and facilitate the conservation and recovery of naturally produced native fish.
 1. Identify possible effects, both locally and on a landscape scale, to natural ecosystems associated with different types and levels of hatchery production and identify approaches to manage these effects.
 2. Identify hatchery practices that may need to be altered in response to changes in the natural environment and other external factors.
 b. Identify breeding, rearing and release protocols that minimize possible adverse impacts on the natural ecosystem.
 c. Evaluate the effectiveness of producing hatchery fish, relative to other strategies, as a means to achieve commercial, recreational, conservation and ecological objectives.
 d. Determine the effects of hatchery operations (for example: flow alteration, effluent water quality, pathogens, migration and spawning distribution, etc.) on native fish, aquatic communities and their habitats.

We have addressed these questions with the following research projects in 2016:

2.a.1. Downstream migration and survival of steelhead smolts – Noakes, Schreck, Leblanc, Thompson
2.a.1.2., 2.b. Alsea steelhead angler harvest – ODFW, OHRC, Noakes, Johnson, Alsea Sportsmens Association
2.b. Mate choice – O’Malley, Banks, Auld, Noakes
2.b., c. Behavior of hatchery steelhead – rearing conditions- Noakes, Schreck, Sharpe, Cogliati
2.b.,d. Sterile triploids - homing and straying (steelhead) – Johnson, Dittman
2.d. Olfactory imprinting and homing (Chinook, steelhead) – Dittman, Johnson, ODFW, OHRC, Noakes, Kamran
2.d. Geomagnetic imprinting and navigation (Chinook, steelhead) – Noakes, Putman, Scanlan, Pollock
2.d. Life cycle monitoring (steelhead) – Clemens, ODFW, Noakes, Schreck, Sharpe

The third goal in our Mission is to:

3. **Educate and train students, fishery biologists, managers and the public on the relationship between hatchery and wild fish, the connection between fish and watershed, estuarine and ocean systems, and the implications for fish management and stewardship.**
 a. Train the next generation of biologists and managers, ODFW and OSU staff through undergraduate, graduate, and continuing education programs and classes at the facility. We continue to host student interns from local Community Colleges for technical training and research experience. For example, we have developed a research project, in collaboration with colleagues from Mt. Hood Community College to investigate the feasibility of enhancing diets of hatchery fish with naturally occurring insect prey.
 b. Provide educational facilities and programs for K-12 students.
 c. Design and manage the facility to provide an environment of passive and active learning for visitors. We continue to host visiting student groups from China and Japan. In particular, an elite academic group (NITOBE College) from the University of Hokkaido, Japan comes to the OHRC at least once each year for a residential educational course.
 d. Provide opportunities for educators and others to use the OHRC for meetings, workshops and programs that further public understanding of the relationship between fish and watershed health. We hosted a Research Workshop meeting on eDNA, organized by Drs. Nicole Duplaix and Taal Levi, attended by about 50 people. A Report of that Workshop was presented to the OHRC Advisory Board. The Workshop led to the development of two new research projects (aquatic mammals as predators in freshwater systems, calibration of eDNA for estimating abundance and distribution of aquatic species). The Workshop also led to a feature story on OPB, with Dr. Shaun Clemens (ODFW) demonstrating and discussing eDNA research.
 e. Help facilitate and coordinate on the ground efforts of groups and individuals that have a key interest in our fisheries and fish management.
 f. Knowing that our wild and hatchery fish are a vital part of each Oregonians heritage, we will develop critical hatchery science to be used as applied knowledge for creating policy and management goals that strengthen, support and conserve our fish.
 g. Conduct outreach in the communities impacted by wild fish or hatchery release issues. We give regular presentations to various stakeholders, community organizations and local residents in Port Orford on our olfactory imprinting study at the ODFW Elk River Hatchery.
 h. Share research results through both publications and presentations on the local, state and international level. Dr. Paul Vecsei (Golder Associates, Yellowknife, NWT, Canada) spent time at the OHRC during November 2016. He produced underwater digital photos and videos that will be used for education and outreach by the OHRC, ODFW and OSU. He has posted some of his images on his website, and has had more than 10,000 hits on the images by December 2016.
The OHRC is a clearinghouse for, and helps facilitate, research in Oregon related to hatchery fish. Research results and new techniques/technologies from these studies are shared with ODFW administrators, managers, biologists and fish culturists, as well as scientists and biologists around the world, during periodic presentations on the progress of research at the OHRC. Administrators and managers review these results and their applicability to hatchery programs and fish management, and direct changes to be made where applicable.

We continued activity in Education and Outreach and Research Workshops based on both applied and basic Research at the OHRC. We maintained active educational programs at every level from kindergarten to post graduate university students. We hosted visits by research collaborators to discuss research proposals for 2016, including Dr. Eric Charnov (Chinook and steelhead surrogate project), Dr. Andrew Berdahl (steelhead homing study), Professor Masahide Kaeriyama and Professor Hitoshi Araki (olfactory imprinting, domestication genetics), Dr. Sigal Balshine (mate choice), Dr. Maria Abate (genetics), Dr. Kathleen Cole (temperature and sexual development), Dr. John Eiler (migration), Fenton Khan (surrogate Chinook and steelhead), Professor Arimune Munakata (migration). We published and distributed information about our activities on our website, through local newsletters and brochures, and in books and journals in the primary scientific literature. In particular, in 2016 we contributed articles to local newsletters, to describe our research, education and outreach activities. We made a number of presentations to the Oregon Legislature, Oregon coastal elementary and secondary schools, together with colleagues from Japan. We attracted collaborators, including many students, from around Oregon, across the USA, Canada, China, Japan, and Sweden.

The OHRC continued our activities during 2016 at an increased pace over previous years. We hosted school visits to the OHRC, participated in teacher training, school visits and coordinated professional activities with students and teachers. We provided educational activities and opportunities at every level from kindergarten to postgraduate university students.

OHRC personnel participated in numerous outreach activities with the local community, ODFW staff, and colleagues from universities and research organizations across Oregon, throughout the USA, Canada, China, Norway and Japan. We hosted visiting researchers, university and school groups, as well as making visits and invited presentations to services clubs, angler organizations and to educational institutions. We participated in local, regional, national and international research meetings where we presented results of OHRC educational and research activities.

We hosted visits from colleagues from across Oregon, the USA, Canada, Japan, and China (listed above). Many of these visits lead to funding applications for new research projects, by our collaborators who plan to come to the OHRC to carry out joint research that takes advantage of our unique facilities. We remain active in publishing the results of our research in a number of international scientific journals and printed books as well as electronic reports. Dr. Noakes continues as Editor-in-Chief of the international journal, Environmental Biology of Fishes, and the monograph series, Fish and Fisheries, both published by Springer Academic Publishers.
Funding

Operations: The OHRC received a biennial operating budget of approximately $1 million from the Oregon Department of Fish and Wildlife for 2016. That was supplemented by funds provided by the Fisheries and Wildlife Department of Oregon State University, through a Memorandum of Understanding with the ODFW.

Research: We brought in about $1.5 million in research activity to the OHRC in 2016, from a variety of local, state, national and international sources. Much of that funding was leveraged by in kind support from the OHRC and OSU budget sources (personnel, facilities, operations). The number of research projects continued at a high level, with numerous active projects in 2016 (see details below). Funding for OHRC activities came from a number of sources. The major operational funding was the biennial budget allocation from ODFW, with contributions from OSU. That funding supported a number of projects at the OHRC, including: Olfactory Imprinting, Temperature and Sex Change, Wild Broodstock (Alsea angling study), Steelhead Smolt Survival, and Otolith Marking. We also received specific funding for individual projects: US Army Corps of Engineers (Chinook and steelhead surrogates), Noakes & Schreck ($768,000 year. We also received additional funding from ODFW, through Legislative allocations, to support the three Research Projects of the Research Plan ($600,000 for the 2015/2017 biennium; details provided below). In addition, a number of collaborators brought their own funding for research projects at the OHRC: Dr. Desiree Tullos – NSF, Dr. Arimune Munakata – JSPS, Dr. Michael Blouin – BPA, Dr. Kathleen Cole – University of Hawaii, Dr. Michael Banks – COMES, Dr. Marc Johnson – ODFW. We also supported a number of our graduate students with individual awards to them as fellowships and scholarships. Many of our postgraduate students are supported by Graduate Teaching Assistantships from Oregon State University, and some have scholarships or other financial awards from a variety of sources.

Education and Outreach: We have been the principal partner with the Lincoln County and Tillamook County School Districts in the OCAMP and Oregon Coast STEM Project. The Oregon Coast STEM Center project received funding for Lincoln County & Tillamook County School Districts (Dr. Noakes is a Co-PI on this project with Ruth McDonald and others; total awarded $1.3 million over most recent 7 years for OCAMP, STEM) with 20 partners now engaged in the Oregon Coast STEM HUB Center.

The OHRC also hosts an annual Free Fishing Day in June each year, and a Fall Festival in November. On those occasions we are open to the public and host 200 – 300 people, including many families. In 2016 we were involved in organization and hosting of the annual research conference of graduate students in the OSU Fisheries & Wildlife Department (RAFWE).

Management Recommendations in 2016 Based on OHRC Research Findings

Most of the research that the OHRC collaborated with in 2016 continued to provide insights into the mechanisms that may be important for effective hatchery program management. While most of these insights suggested areas for further research, we continued to share results with ODFW hatchery managers and biologists for their consideration.

The results from the olfactory imprinting study showed that juvenile salmon imprint on their natal water as they hatch and that young juveniles cannot imprint on well water was shared with hatchery managers. This resulted in a major publication in Fisheries magazine, one of the key scientific journals in our field. ODFW managers have considered this information and some Hatchery Managers have already modified incubation practices to add river water to incubation well water to improve homing back to the
hatchery. Our results were applied to hatchery production of Atlantic salmon in Vermont, with significant increases of imprinted hatchery fish. Results from our studies of olfactory imprinting and geomagnetic navigation of salmon and steelhead are being considered for adoption in fisheries management in Newfoundland (Canada) and Argentina. We have been asked by the Great Lakes Fishery Commission to offer expert advice and opinions on proposal to test parasitic sea lamprey (*Petromyzon marinus*) for their ability to use geomagnetic orientation in their migration. Research is identified in the OHRC Research Plan to determine how important this early imprinting is to the overall homing of returning adults. We followed up on these results with one of the Research Projects in the OHRC Research Plan (Olfactory Imprinting). In 2016, we continued with the Research Plan on this Project by sampling river water in southern Oregon (Elk River, Sixes River) where significant straying of hatchery fish occurs. We are analyzing those water samples to identify the chemical compounds associated with straying of hatchery fish. We are also testing Elk River Chinook salmon at the OHRC and NOAA (Seattle) to determine the most appropriate chemical(s) for imprinting Elk River hatchery Chinook salmon.

We continued to share the results of the geomagnetism study with hatchery managers and management biologists for their consideration. While the results showed that fish reared in hatchery tanks with metal in the structure had difficulty orienting themselves to their current geographic location, more research is needed to determine if the magnetic fields produced by the metal actually interfere with the fish’s ability to home back to the hatchery. Changes to hatchery infrastructure are not planned at this time, pending the results of future research on this topic. Ongoing research in 2016 addressed the question of possible effects of magnetized coded wire tags on orientation and navigation responses of Chinook salmon and steelhead, and a manuscript from that study is in preparation for publication.
Appendix 1: Detailed Activity Reports for the OHRC
OHRC Mission Goals 1 and 2: Research Projects

Research Projects at the OHRC are reviewed according to our Mission Statement, current priorities, funding and the availability of personnel and facilities. All research projects are reviewed by ODFW, OHRC staff, the Director and the OHRC Board, and are required to provide updates and final reports. The current Research Projects can be grouped into major categories, related to the OHRC Mission and goals.

We have completed more than 70 research projects connected with the OHRC since opening in 2005. Details of the Proposals, Progress Reports, Completion Reports and resulting publications are available on the OHRC website, and in the records of the previous OHRC Advisory Committee. Many of those Reports include Recommendations that were made to the ODFW or other agencies for consideration or implementation. Results of our activities are reported to annual ODFW Meetings (hatchery managers and regional biologists in alternate years).

Individual Research Projects
During calendar year 2016 we had a number of active research projects at the OHRC. Those projects are listed below, with details for each as appropriate:

(1) Olfactory imprinting (Mission Goals 1.c., 2.d)
Our research on this topic is in response to a priority request from ODFW managers to provide recommendations for their management of homing and strayng in wild and hatchery salmon and steelhead. We began research on this project in 2012. Funding is provided from the OHRC – OSU operating budget, with support in kind provided by ODFW hatcheries, NOAA (NWFSC), and OSU. This project expanded in 2016 with allocation of long-term research funds from the Oregon Legislature. Our collaborators include Dr. Andy Dittman (NOAA, NWFSC, Seattle), Dr. Gabriel Singer (Leipzig Institute, Berlin, Germany), OHRC, ODFW and OSU personnel. All of our collaborators provide support directly and in kind for time, equipment and personnel. A continuing postgraduate student, Kate Self, supported by US ACOE funding and a scholarship from NSF – JSPS, carried out her M. Sc. research with this group. She spent summer 2016 working with collaborators at Hokkaido University, Japan on part of their research project. Our research collaborators at Hokkaido University have established an ongoing exchange with OSU, as well as the summer research program in Sapporo, Japan. She found that genetic activity in the brains differed between migratory and hatchery juvenile Chinook salmon. She is preparing those results, together with the rest of her M. Sc. research, for her thesis defense (Spring 2017). We have presented a number of progress reports at local, regional and national research meetings, and at invited presentations to university classes, school groups, angler clubs, Willamette Fisheries Science Review and ODFW Hatchery Managers. The first manuscript from this project was published in Fisheries (Dittman et al. 2015). Oral papers from this project were presented during 2016 at the Oregon Chapter of the American Fisheries Society, the International Charr Symposium, and the biennial conference on Ecology, Ethology and Evolution of Fishes. We have shown that both Chinook salmon and steelhead imprint on the water in which they incubated, from fertilization to swim up stage. The fish imprint strongly on river water, but not on well water. We have verified our findings at both the OHRC and at the ODFW Leaburg Hatchery. Our results have resulted in significant re-evaluation of ODFW hatchery practices for the use of water during incubation. Our colleagues in Vermont have tested our predictions with Atlantic salmon (*Salmo salar*) and have found that fish incubated in river water return at four times the number incubated in well water (their standard procedure) – a result that is likely to change their hatchery management practices. We continued our international collaboration on this project with colleagues from the USA, Norway, Sweden, Argentina, Newfoundland (Canada) and Japan. We are now studying the detailed changes in the brains of Chinook salmon and steelhead during their responses to
olfactory imprinting cues and geomagnetic orientation. We will continue this research as one of the three Research Projects in the OHRC Research Plan (details given in that section of this report). The critical step in this research will be to rear large numbers of salmon and steelhead at a selected ODFW hatchery (Elk River) in the two sources of water, mark them accordingly and release them as production smolts. The homing/straying of the returning adults will determine whether ODFW (and probably other agencies) changes their hatchery practices. This forms part of the proposed Research Plan activity for the OHRC (details elsewhere in this Report).

(2) Geomagnetic imprinting (Mission Goals 1.c, 2.d)
Our research on this topic is also in response to a priority request from ODFW to provide recommendations for their management of homing and straying in wild and hatchery salmon and steelhead. This research has produced the first evidence that salmon and steelhead use geomagnetic cues for their orientation and navigation, from embryos to adults. A series of major papers has been published from this research and more are in progress (Putman et al.). Results from that work have been presented at a number of regional, national and international research conferences. We have shown conclusively that Chinook salmon, sockeye salmon, pink salmon, Atlantic salmon and steelhead use geomagnetic cues to orient their movements and navigation from the time of hatching until their return as adults. Our publications have attracted a considerable level of interest because we are the first to demonstrate that salmon and steelhead use geomagnetic orientation (several hundred web sites list our research papers already). Michelle Scanlan and Amanda Pollock, supported by funding from the US ACOE and the OHRC are continuing their analyses of these studies for publication. Our findings have very significant implications for both wild and hatchery salmon and steelhead. We have shown experimentally that rearing young fish in a hatchery environment with conventional equipment and facilities impairs their ability to use geomagnetic cues to orient and navigate. We predict that any interference or disruption of the geomagnetic cues would potentially cause significant impairment of homing in both wild and hatchery fish. Sources of such disruption would include iron reinforcement bars in concrete buildings or raceways, transport of smolts inside steel barges, passage of smolts or adults through hydroelectric dams or operation of wave energy structures or undersea electrical cables. In a similar manner, wild fish could be affected by any disruption of their magnetic environment during their migrations as smolt or adults (e.g., passage through hydroelectric dams, proximity to wave energy structures or electrical cables). We are continuing these experiments to compare a life cycle testing of the homing and straying of fish reared under normal and disrupted magnetic fields. This will require cooperation with ODFW production hatcheries, to produce the numbers of fish for life cycle testing, and will have to extend over at least one life cycle of the fish to determine the effects on returning adults. Michelle Scanlan’s research investigated the effects of coded wire tags on the magnetic responses of juvenile salmon and steelhead. Coded wire tags are strongly magnetic, and they are inserted into the nasal region of the fish, where the magnetic receptors are probably located. Results from her study will certainly have very significant implications for the large scale marking of hatchery fish with coded wire tags. Our research on olfactory imprinting and geomagnetic orientation were the basis for our invited special session on Orientation and Navigation during the Annual Meeting of the Oregon Chapter of the American Fisheries Society (Seaside, Oregon; February 2016), and oral papers at the international biennial research conference on Ecology, Ethology and Evolution of Fishes (Florida State University).

(3) Chinook wild surrogates (Mission Goals 1.b., 2.a.2., 2.b., 2.d.)
This project is a continuing, multi-year project by Drs. Carl Schreck and David Noakes, supported by funding from the US Army Corps of Engineers (Willamette River BiOp), initiated in 2011 (with funding projected until at least 2020). We have been assisted by Dr. Eric Billman, a postdoctoral research associate (2011 – 2014; replaced by Dr. Karen Cogliati summer 2014), two graduate students (Julia
Unrein, MSc completed December 2014; Kate Self, MSc graduation expected June 2017), two part-time research assistants and two student work-study students. We now receive about $580,000 each year for this project, with significant leverage from OHRC, OSU and USGS in-kind support. The first of a series of papers from this study were published in 2015 (Billman et al., Putman et al.) and a series of others are in various stages of publication. This project, together with the steelhead wild surrogate project, are examples of studies to determine what rearing mechanisms produce differences between wild and hatchery fish, and how to manage those differences to meet fishery and conservation needs. Our primary task is to provide juvenile fish of specified qualities, to research collaborators from the ODFW, the Corps and others, to be used in their field studies required by the Willamette BiOp. Those fish must emulate wild fish as closely as possible in terms of genetic origin, size, growth history, morphology, physiology and behavior. They are used by our research collaborators in tagging and tracking telemetry studies of juvenile fish through reservoirs, through dams and fishways and down the Willamette River to Willamette Falls. We provide thousands of such fish, at different times of the year, to specifications from our collaborators. In order to produce those fish we are conducting extensive studies at the OHRC and the Fish Genetics and Performance Laboratory in Corvallis to determine the effects of genetic origin, diet, density, rearing substrate, rearing conditions and handling on the final performance of those fish in the Willamette River. We have been successful with this project in providing thousands of fish that perform almost the same as wild conspecifics, in contrast to conventional hatchery fish, for the studies in which they have been used. We have presented our results in Progress Reports each year. We have also given oral presentations on this project to ODFW, OSU, Oregon AFS, and other regional, national and international meetings. Our results from this and the steelhead wild surrogate project have implications and potential applications for ODFW and other management agencies. Our results inform management personnel on the practices and procedures to follow that can minimize (or maximize) the phenotypic and behavioral differences between wild fish and those produced in their hatcheries. Thus far the numbers of our wild surrogate fish that have been released in the wild have been deliberately kept limited, to avoid any potential genetic or ecological interactions with wild fish.

(4) Steelhead wild surrogates (Mission Goals 1.b., 2.a.2., 2.b., 2.d.)
This project, also funded by the US Army Corps of Engineers ($187,000 annually), was initiated in 2013. A postgraduate student, Kate Self, is working on this for her M. Sc. degree, supported by Corps funding (expected completion Spring 2017). This project is exactly comparable to the Chinook wild surrogate project, and was requested by the Corps as result of our success with the Chinook salmon. The objectives, procedures and evaluation are the same as for the Chinook project. As with the Chinook wild surrogate project, progress on this project is very well received by the Corps and other collaborators.

(5) Temperature and sex change (Mission Goals 1.a., 1.b., 2.d.)
This project was initiated in response to concerns brought to ODFW and OSU about possible effects of climate change on wild salmon and steelhead, and the potential for hatchery rearing effects at ODFW production hatcheries. The first manuscript from this project has been submitted for publication (Cole et al.), and two others are in preparation. We have presented our results at a number of national and international scientific meetings here in Oregon, Hawai‘i, Scotland and Canada. Our results are of considerable significance to hatchery managers, since we found no evidence that the range of temperatures used to rear fish are likely to produce sex change. Wild fish are also not likely to change sex as a result of the projected temperature changes forecast by climate models. However, it is clear that elevated water temperatures during incubation can change the rate of sexual development in steelhead, especially in hatchery fish. Our results are important because of our conclusions, and because they resolve some uncertainty about the potential impacts of climate or habitat changes. There might
also be concerns about the consequences of rearing steelhead at elevated temperatures in hatcheries, for otolith marking, or to regulate production schedules.

(6) Domestication selection (Mission Goals 1.a, 1.b., 2.d.)
This project is conducted by Dr. Michael Blouin, his postdoctoral research assistants, Drs. Neil Thompson and Mike Garvin, and their laboratory collaborators. The project is a continuation of early work by Dr. Blouin at the OHRC, carried out as part of his long-term study of the factors producing lifetime differences in reproductive fitness of hatchery and wild salmon and steelhead. This project is another part of the OHRC Research Plan (details elsewhere in this Report). Drs. Neil Thompson, Mike Garvin and Mike Blouin have a continuing series of publications from this work. Funding for this project comes to Dr. Blouin from the BPA, with some in kind provided by OHRC personnel and facilities. This research is of primary concern to many people in the Pacific Northwest, as Dr. Blouin’s earlier research is the basis for ongoing concerns about negative genetic effects of hatchery steelhead on wild counterparts. This project is the latest in a series of tests of specific predictions by Dr. Blouin from his hypotheses for the mechanisms causing the reduced fitness of hatchery fish. He has reared genetically identified fish from both hatchery and wild parents, under a number of different density conditions. His prediction was that hatchery fish would do well at high rearing densities (= hatchery conditions) while wild fish would do well at low rearing densities (= wild conditions). The results from this study did not confirm his predictions, but suggested another hypothesis that success in the hatchery was dependent on reaching a critical size at smoltification. This hypothesis is now being tested (2016 – 2017) at the OHRC.

(7) Temperature and migration (Mission Goals 1.b., 1.c., 2.a.2., 2.d)
This project is being carried out in collaboration with Japanese colleagues, Professor Arimune Munakata, from Miyagi University in Sendai, Japan and his associates. He has come to the OHRC annually over a number of years to collaborate with Drs. Carl Schreck and David Noakes in this research. He has presented results of his research in both oral and published papers since he began this study. Funding for this research comes from Japanese awards to Professor Munakata, with some in kind support of facilities from the OHRC, and our project support from the US Army Corps of Engineers. This project was initiated because of interest in the factors that initiate the downstream movements of juvenile smolts of salmon and steelhead. The behavior and survival of salmon and steelhead smolts is of critical importance, since we have shown in other projects that only about 40% of smolts survive to reach the Pacific Ocean (Romer et al.). The timing of downstream migration is obviously a major part of this phenomenon. Furthermore, there is the complexity that while some fish move downstream to the Pacific Ocean and complete their life cycle as anadromous steelhead, a significant but variable number of individual fish remain in freshwater as non-migratory rainbow trout. Those rainbow trout can have a significant effect on reproductive fitness of hatchery fish, and so it is important to learn what regulates this difference in migratory behavior of steelhead and rainbow trout. Professor Munakata’s research has been remarkable because it shows that very small (perhaps less than 1°C) changes in temperature can trigger downstream movement. Most remarkably, however, that downstream movement response is shown only by steelhead, rainbow trout show no such movement. Professor Munakata is now continuing his studies in Japan to determine what internal (physiological) mechanism produces this difference between steelhead and rainbow. That difference is part of a much larger concern, because of the major differences in life history and management of rainbow and steelhead, as well as the influences on reproductive success than can result for hatchery fish. Dr. Munakata was here again in 2016 and carried out tests on the effects of temperature change on migration of Chinook salmon. He has presented those results at meetings in Japan and has two manuscripts in preparation for publication from this work.
(8) Alsea steelhead population genetics (Mission Goals 1.c., 2.a.1.2.b.)
This project was conducted by a graduate student, William Hemstrom, supervised by Drs. Michael Banks and David Noakes, with very considerable cooperation from ODFW hatchery personnel and fishery biologists. Funding support came from OHRC, OSU, and COMES. The request for this project came from ODFW fish biologists, hatchery managers and program managers. ODFW biologists and program managers have a need to know the detailed genetic structure of hatchery and wild steelhead in the Alsea River basin in relation to possible management decisions on outplanting smolts and utilization of adults for wild broodstock programs. This project is supported by funding to Drs. Banks and Noakes from several external sources, with considerable in kind and personnel support from ODFW and OHRC for field collections. The ODFW North Fork Alsea Hatchery produces hatchery steelhead to support recreational angling harvest, a matter of continuing interest and concern to local anglers and other stakeholders. ODFW has been considering alternative hatchery procedures at the North Fork Alsea Hatchery for broodstock management, rearing and release, outplanting and angler surveys. The critical primary need for all these considerations is a detailed survey of the population genetics of Alsea River steelhead. We have worked with ODFW and OHRC personnel to collect genetic samples from as many locations as possible in the Alsea and adjacent watersheds. Dr. Banks and his postgraduate student, Will Hemstrom (graduation 2016), have analyzed those samples in their lab at HMSC. They presented progress reports and a written draft of their results to the OHRC Advisory Committee and to ODFW hatchery and program managers. The final written report has been submitted for publication in the primary scientific literature (Hemstrom et al.). The results of this study have been incorporated in hatchery practices at the ODFW North Fork Alsea Hatchery already. The detailed knowledge of genetic identity of wild and hatchery steelhead in different locations within the Alsea River watershed was used to determine the location of outplanting releases of steelhead smolts from the hatchery, and was used as part of the decision on locations to sample fish for hatchery broodstock.

(9) Wild broodstock (Mission Goals 1.c., 1.b., 1.c., 2.a.1., 2.a.2., 2.b., 2.c.)
This project was initiated in response to a request from the Alsea Sportsmens Association, a local recreational angling group, together with other interested stakeholders. Derek Wilson, ODFW Fish Biologist in Newport has taken the lead and obtained R & E funding to provide for the necessary initial creel census for this project. Funding for analyses of genetic samples of parental broodstock was provided by the OHRC and ODFW, and facilities for the genetic work provided by Dr. Michael Banks at HMSC. This project depends on extensive in kind and personnel support from ODFW, OHRC and OSU. There has also been a lot of effort by a number of collaborators on this project to advertise the project, to encourage angler participation and to highlight the cooperative nature of this between ODFW and local anglers. This project has also involved very extensive outreach with the local anglers and other stakeholders, numerous public presentations and continued close cooperation with the general public. This project is of much broader interest to ODFW hatchery personnel and program managers. The basic question in this project is whether the source and treatment of hatchery broodstock will change the success rate of anglers on returning fish. Conventional broodstock programs take their fish from traps, using fish that have not been taken by anglers. The hypothesis we are testing is that the probability of being caught by anglers is affected by the source and handling of the parent fish. The prediction we are testing is that fish produced from conventional (trap caught) broodstock will be less likely to be caught by anglers than will fish produced from broodstock fish that were caught by anglers. The question is simple, obvious and very significant. The test requires very considerable cooperation, collaboration and coordination among the anglers, the ODFW hatchery managers and personnel, the OHRC personnel and the OSU scientists in the project. We now have all the elements of the project in place, and we are awaiting the returns of the first fish from the two sources of adult broodstock (2017). The project will have to extend over at least one life cycle of the fish, to measure angler harvest of the returning fish.
from the two sources of broodstock. The results of this project will be of considerable interest and importance to anglers, ODFW fish hatchery managers, ODFW fish biologists and ODFW program managers, as well as the research scientists. If we find the predicted difference in angler harvest there will undoubtedly have to be significant changes in broodstock management practices and procedures. If there is no difference in angler harvest of returning steelhead, then angler groups and other interest groups, as well as research scientists, will be assured broodstock collection is not responsible for the level of contribution of these fish to the fishery. This will resolve a long-standing concern about hatchery management, and it will also demonstrate a contrast in the situation between the original example of angler catch of bass in Illinois, and angler catch of steelhead in Oregon. This project has been widely discussed in the local and regional communities, and has been the subject of feature stories in The Oregonian and has been presented by us a number of times to meetings of the OHRC Advisory Committee and other groups. The project was initiated with wild broodstock at the Alsea North Fork Hatchery during this brood year (2014 – 2015). Initial release of smolts will take place in 2016, following standard hatchery practices. Planning is now underway with the Alsea Sportsmens Association, ODFW and the OHRC to obtain funding for the next creel census (2017).

(10) Triploid steelhead (Mission Goals 1.c., 2.a.1., 2.a.2., 2.b., 2.d.)
This project is a continuation by Dr. Marc Johnson (ODFW) of an earlier project initiated by requests from ODFW program managers. Our initial work on this project was the M. Sc. graduate thesis research by Eva Schemmel (recently completed her Ph.D. studies at Hawai‘i). Eva tagged and tracked intact and surgically castrated hatchery adult steelhead in the Clackamas River. Her research showed that reproductively sterilized adult steelhead remained in the river, occupied the same locations as intact fish, and were caught by anglers at the same rate as intact (control) fish. This immediately led us to investigate practical alternatives for producing reproductively sterile hatchery steelhead. Subsequent work on this project was supported by OHRC and ODFW funding, personnel and facilities. Of several options tested, we learned that using triploid fish was likely the best option. Ryan Couture, Joseph O’Neil and ODFW hatchery personnel worked to develop the detailed protocol to produce triploid steelhead and other salmonids in subsequent research at the OHRC. Triploid fish are reproductively sterile, and can be reared in large numbers using conventional production hatchery techniques. Ryan, Joseph and ODFW hatchery personnel tested the behavior of triploid fish in the experimental stream channels at the OHRC to confirm that they are reproductively sterile. This project then moved to the production scale testing necessary to determine if these fish can be produced by ODFW hatcheries and stocked as smolts with Dr. Marc Johnson as the research lead. During 2015 and 2016, Dr. Johnson had extensive collaboration with the Oregon Coast Community College (Newport, Oregon) and the Oregon Coast Aquarium, to monitor growth and survival of diploid and triploid steelhead in salt water. Dr. Johnson has followed those marked fish (PIT tags) to estimate downstream movement, ocean survival and subsequent return rates as adults and angler harvest rates. This has been a multi-year project, involving collaboration and cooperation with many people. The results of this project are of major interest to ODFW program managers, fish biologists and hatchery personnel. If reproductively sterile hatchery fish can be stocked in selective watersheds to support recreational angling harvest then a major concern of hatchery – wild interactions will be resolved. The first returning fish from this Project (diploid and triploid adults) were captured in 2016, and Dr. Johnson is now analyzing data from those fish.

Impact of Research:

Reports and Publications
Results of our research are given in numerous oral presentations and publications, selected examples are listed below. Presentations to the former OHRC Advisory Committee and the current Board at regular meetings are available on the OHRC website. Lists of earlier publications are presented in all our Annual Reports, the following are from 2016 (or have not previously been listed):

Papers Presented at Research Conferences *

2016

Northwest Fish Culture Concepts, Grand Mound, WA (oral presentation).

Invited Oral Seminars and Presentations *
(angler organizations, service clubs, logging and other industries, elementary and secondary schools, conservation groups, STEP meetings, etc.) – I give about 40 such presentations each year, all related to research, education and outreach activities at the OHRC.

Our research attracts attention, collaborators and joint research proposals. The impact of our research can be estimated by conventional methods, perhaps the clearest examples are from our recent publications on sockeye, Chinook and steelhead. Our research on geomagnetic orientation and navigation in Chinook, sockeye and steelhead has attracted considerable attention to the OHRC, with numerous requests for information and proposals for funding applications and research collaborations. Similarly, the ongoing OHRC Research Plan Projects (Michael Banks, Mike Blouin, David Noakes) are regularly cited in articles in the news media, as well as scientific journals.

Sample searches on the Web will indicate the impacts of our research:

https://www.google.com/?gws_rd=ssl#q=salmon+magnetic+navigation

https://www.google.com/?gws_rd=ssl#q=blouin+salmon+fitness

https://www.google.com/?gws_rd=ssl#q=banks+salmon+mate+choice
Research Workshops

We continue our series of Research Workshops at the OHRC on a range of topics to meet the OHRC Mission (Lampreys, eDNA, Behavioural Ecology). In addition, we participate actively in local, regional, national and international scientific meetings where we present the results of our research. We organized and hosted the Willamette Fisheries Science Review at Oregon State University in 2016 and 2017, and served on the organizing and steering committees for the International Charr Symposium (Tromso, Norway) and the international biennial conference on Ecology, Ethology and Evolution of Fishes (Florida State University).

OHRC Mission Goal 3: Education and Outreach

Joseph O’Neil continued his activities at the OHRC and during visits to a number of schools in Lincoln County during 2016 as the lead person responsible the Education and Outreach activities at the OHRC. He was a key person in the OCAMP Science Education Project, and he continues as an active member of the Oregon Coast STEM project. He is responsible for organizing and hosting school visits and school tours at the OHRC as well as taking presentations to schools and meetings away from the OHRC. We have made presentations and hosted visits of more than 1,000 elementary and secondary school students in this program. In addition, we travel to schools throughout Lincoln, Benton and Tillamook counties to provide organized science exercises to classes from kindergarten to Grade 12 students. We also provide science classes and science exercises to meetings of Scouts and other service groups.

David Noakes continues as one of the Co-PI personnel for the Oregon Coast STEM (budget details listed elsewhere). He provides invited seminars, leads science colloquia and makes school visits to judge science fairs and to advise students at all levels. He is also responsible for teaching duties in the Fisheries and Wildlife Department at OSU, including senior undergraduate courses in Fish Ecology (classroom and Distance Education) and a postgraduate class in Fish Ecology & Conservation (classroom and Distance Education). He continues to give invited lectures and seminars at OSU on Scientific Publishing, and on salmon biology and conservation. He regularly supervises postgraduate students who conduct their research at the OHRC, and serves on the Advisory Committees for other postgraduate students at OSU. His activities in the Oregon Coast STEM project include visits and presentations to classrooms, advising on student projects and coordinating school visits and presentations by visiting scientists. He also presents invited lectures on OHRC research, scientific editing and publishing at regional, national and international meetings.

Every year a number of postgraduate students, research associates and postdoctoral research scholars conduct part or all of their research at the OHRC, with support in kind from our personnel and facilities. Their research topics include subjects as diverse as studies of the impact of dams and fish passage on steelhead in the Umpqua River, responses of juvenile salmon to avian predators, domestic selection on wild and hatchery fish, experimental production of hatchery salmon and steelhead to behave and perform as wild fish, olfactory imprinting in salmon and steelhead and the use of geomagnetic cues for navigation by juvenile and adult salmon and steelhead.